Aproximación espacial sobre la pobreza monetaria en Bogotá: una aplicación desde la estimación en áreas pequeñas

dc.contributor.advisorTéllez Piñérez, Cristian
dc.contributor.advisorOrtiz Rico, Andrés Felipe
dc.contributor.authorDurán Gil, Carlos Alberto
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2025-01-27T19:20:40Z
dc.date.available2025-01-27T19:20:40Z
dc.date.issued2024-12-13
dc.descriptionLa incidencia de la pobreza monetaria es un indicador fundamental en la evaluación de las condiciones socioeconómicas de la población, cuyo seguimiento hace parte de la Agenda de los Objetivos de Desarrollo Sostenible (ODS). Ante la creciente necesidad de contar con información detallada para su monitoreo, este trabajo desarrolla una metodología enfocada la estimación en áreas pequeñas (SAE) con el objetivo de lograr desagregaciones y mapas de la pobreza monetaria en los hogares a nivel de unidad de planeamiento zonal (UPZ) en la ciudad de Bogotá. Con base en los microdatos derivados de la Gran Encuesta Integrada de Hogares (GEIH) vigencia 2021, y el uso de 25 covariables obtenidas de datos geoespaciales, se llevan a cabo modelos Fay-Herriot, con el fin de obtener los mejores estimadores lineales insesgados (EBLUP) junto a sus extensiones robustas espaciales (RSEBLUP), comparando sus precisiones a través de los errores marginales. Los resultados obtenidos reflejan que las covariables empleadas en los modelos son predictoras adecuadas de la pobreza monetaria, y que la adición de la componente espacial al modelo, aplicando procesos robustos, ofrece mejores precisiones en comparación con las estimaciones directas resultantes de la encuesta.spa
dc.description.abstractThe incidence of monetary poverty is a fundamental indicator in assessing the socioeconomic conditions of the population, and its monitoring is part of the Agenda for the Sustainable Development Goals (SDG). In response to the growing need for detailed information for monitoring purposes, this work develops a methodology focused on small area estimation (SAE) with the aim of achieving disaggregations and maps of monetary poverty in households at the level of the zonal planning unit (UPZ for its acronym in Spanish) in the city of Bogotá. Based on the microdata derived from the Integrated Household Survey (GEIH for its acronym in Spanish) for the year 2021, and the use of 25 covariates obtained from geospatial data, Fay-Herriot models are carried out in order to obtain the best linear unbiased estimators (EBLUP) along with their robust spatial extensions (RSEBLUP), comparing their precisions through marginal errors. The results obtained show that the covariates used in the models are adequate predictors of monetary poverty, and that the addition of the spatial component to the model, applying robust processes, provides better precision compared to the direct estimates resulting from the survey.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Estadística Aplicadaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationDurán, C. (2024). Aproximación espacial sobre la pobreza monetaria en Bogotá: una aplicación desde la estimación en áreas pequeñas [Tesis de maestría, Universidad Santo Tomás]. Repositorio institucional de la Universidad Santo Tomás https://repository.usta.edu.cospa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/59530
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Estadísticaspa
dc.publisher.programMaestría Estadística Aplicadaspa
dc.relation.referencesArdilly, P., Bouche, P., and Zhu, W. (2018). Small areas and spatial correlation. In Handbook of Spatial Analysis - Theory and Application with R, number 131 in Insee Méthodes, pages 305–324. Insee - Eurostat, France, institut national de la statistique et des Études Économiques edition. https://www.insee.fr/en/information/3635545.spa
dc.relation.referencesArtelaris, P. and Kandylis, G. (2014). Mapping poverty at regional level in Greece. Région et Développement, (39):131–147. https://www.researchgate.net/publication/ 271441877_Mapping_poverty_at_regional_level_in_Greece.spa
dc.relation.referencesAsfar, K., Anang, K., and Sadik, K. (2016). Optimum Spatial Weighted in Small Area Estimation. Global Journal of Pure and Applied Mathematics, 12(5):3977–3989. https: //www.ripublication.com/gjpam16/gjpamv12n5_10.pdf.spa
dc.relation.referencesAsian Development Bank (2020). Introduction To Small Area Estimation Techniques: A Practical Guide for National Statistics Offices. Asian Development Bank, Manila, Filipinas. https://www.adb.org/sites/default/files/publication/609476/ small-area-estimation-guide-nsos.pdf.spa
dc.relation.referencesBotello, S. and Valderrama, D. (n.d.). Algoritmo para la construcción de líneas de pobreza y pobreza extrema a partir de la Encuesta Nacional de Ingresos y Gastos – ENIG 2006/2007. https://microdatos.dane.gov.co/index.php/catalog/545/ download/9327/Algoritmo_para_la_construccion_de_las_lineas_de_pobreza.pdf.spa
dc.relation.referencesBoubeta, M., Lombardía, M., and Morales, D. (2023). Small area prediction of proportions and counts under a spatial Poisson mixed model. Statistical Methods & Applications. doi: 10.1007/s10260-023-00729-7.spa
dc.relation.referencesBurgard, J., Morales, D., and Wolwer, A. (2022). Small area estimation of socioeconomic indicators for sampled and unsampled domains. AStA Advances in Statistical Analysis, 106:287–314. doi: 10.1007/s10182-021-00426-4.spa
dc.relation.referencesCaballero, E. (2015). Division Upz Bogota. https://es.scribd.com/doc/267439976/ DIVISION-UPZ-BOGOTA.spa
dc.relation.referencesCastañeda, J., Téllez, C., and Fúquene, J. (2019). Una alternativa para la estimación del ingreso promedio mediante métodos de estimación en áreas pequeñas. arXiv, 1(1907.05387):1–19. https://arxiv.org/pdf/1907.05387.spa
dc.relation.referencesChambers, R., Chandra, H., Salvati, N., and Tzavidis, N. (2009). Outlier Robust Small Area Estimation. Working Paper 16-09, Centre for Statistical & Survey Methodology. https://ro.uow.edu.au/cssmwp/36.spa
dc.relation.referencesChambers, R., Chandra, H., Salvati, N., and Tzavidis, N. (2014). Outlier robust small area estimation. Journal of the Royal Statistical Society, 76(1):47– 69. https://ro.uow.edu.au/articles/journal_contribution/Outlier_robust_ small_area_estimation/27790434?file=50560212.spa
dc.relation.referencesChambers, R., Chandra, H., and Tzavidis, N. (2011). On bias-robust mean squared error estimation for pseudo-linear small area estimators. Survey Methodology, 37(2):153–170. https://www150.statcan.gc.ca/n1/pub/12-001-x/2011002/article/ 11604-eng.pdf.spa
dc.relation.referencesChandra, H., Aditya, K., and Sud, U. C. (2018). Localised estimates and spatial mapping of poverty incidence in the state of Bihar in India - An application of small area estimation techniques. PLos ONE, 13(6):1–14. doi: 10.1371/journal.pone.0198502.spa
dc.relation.referencesChandra, H., Salvati, N., Chambers, R., and Tzavidis, N. (2010). Small Area Estimation under Spatial Nonstationarity. https://ro.uow.edu.au/cssmwp/71/spa
dc.relation.referencesComisión Estadística para América Latina y El Caribe - CEPAL (2021). Estimaciones subnacionales de la pobreza para América Latina. Technical Report 4, CEPAL. https://repositorio.cepal.org/server/api/core/bitstreams/ 74483051-fd59-4953-9396-7b0e89c16b21/content.spa
dc.relation.referencesConsejo Nacional de Política Económica y Social - CONPES (2012). Metodologías oficiales y arreglos institucionales para la medición de la pobreza en Colombia. https: //colaboracion.dnp.gov.co/cdt/conpes/social/150.pdf.spa
dc.relation.referencesCorral, P. (2023). Dos décadas colocando la pobreza en el mapa: Estimación para áreas pequeñas en el Banco Mundial. https://www.youtube.com/watch?v=hohZCYsytWk.spa
dc.relation.referencesCorral, P., Molina, I., Cojocaru, A., and Segovia, S. (2022). Guidelines to Small Area Estimation for Poverty Mapping. https://openknowledge.worldbank.org/server/api/ core/bitstreams/1d1fcadc-43e3-541b-8949-fea45dd2a528/content.spa
dc.relation.referencesCrescenzi, F., Betti, G., and Gagliardi, F. (2015). Comparing small area techniques for estimating poverty measures. Quaderni del Dipartimento di Economia Politica e Statistica, (721):1–25. https://www.deps.unisi.it/sites/st02/files/allegatiparagrafo/ 16-12-2015/721.pdf.spa
dc.relation.referencesCámara de Comercio de Bogotá (n.d.). Unidades de Planificación Zonal / Definición. https: //recursos.ccb.org.co/ccb/pot/PC/files/3definicion.html.spa
dc.relation.referencesde Smith, M., Goodchild, M., and Longley, P. (2024). Geospatial Analysis - A comprehensive guide. Number 2024-1. 7th edition. https://spatialanalysisonline.com/.spa
dc.relation.referencesDelatie, L. (2021). Poverty Mapping Using Small Area Estimation Techniques - The Jamaican Experience. https://www.cepal.org/sites/default/files/presentations/ poverty-mapping-using-small-area-estimation-jamaica-jul-2021.pdf.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística - DANE (2021). Actualización metodológica para la construcción de las líneas de pobreza monetaria y pobreza monetaria extrema. https://www.dane.gov.co/files/investigaciones/condiciones_ vida/pobreza/2019/pobreza_monetaria_actualizacion_metodologica_ 2019-nuevas-lineas.pdf.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística - DANE (2023a). Medición de Pobreza Monetaria y Desigualdad 2021. https://microdatos.dane.gov.co/index.php/ catalog/733.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística - DANE (2024). Pobreza monetaria en Colombia Año 2023. Boletín Técnico, DANE, Bogotá. https://www.dane.gov.co/ files/operaciones/PM/bol-PM-2023.pdf.spa
dc.relation.referencesDepartamento para la Prosperidad Social - DPS (2021). Poverty Map - Colombia 2018 - 2019. https://www.cepal.org/sites/default/files/presentations/ poverty-mapping-prosperidad-social-colombia-jul-2021.pdf.spa
dc.relation.referencesEdochie, I., Newhouse, D., Tzavidis, N., Schmid, T., Foster, E., Luna, A., Ouedraogo, A., Sanoh, A., and Savadogo, A. (2024). Small Area Estimation of Poverty in Four West African Countries by Integrating Survey and Geospatial Data. Policy Research Working Paper 10892, World Bank Group. https: //documents.worldbank.org/en/publication/documents-reports/documentdetail/ 099158209042442519/idu170f4516f1b8a7146a619630191a7420b4631.spa
dc.relation.referencesFoster, J., Greer, J., and Thorbecke, E. (2010). The Forster-Greer-Thorbecke (FGT) Poverty Measures: Twenty-Five Years Later. Working Paper IIEP-WP-2010-14, Institute for International Economic Policy Working Paper Series. https://www2.gwu.edu/~iiep/ assets/docs/papers/Foster_IIEPWP2010-14.pdf.spa
dc.relation.referencesFranco, C. (2021). SAIPE: Poverty Mapping in the United States. https://www.cepal.org/sites/default/files/presentations/ saipe-poverty-mapping-united-states-jul-2021.pdf.spa
dc.relation.referencesFranco, C. (2022). An Introduction to Small Area Estimation. https://www. dropbox.com/scl/fi/p5bz1sc6xrow16gcu4tpx/SaeWebinarCIRSMay11.pdf?rlkey= bgf5pnajfn1xgaw56ezb9iop3&e=1&dl=0.spa
dc.relation.referencesFranco, C. (2023). Aplicación de la Estimación de Áreas Pequeñas en las Estadísticas Oficiales de los Estados Unidos. https://www.youtube.com/watch?v=hohZCYsytWk.spa
dc.relation.referencesGershunskaya, J. and Lahiri, P. (2011). Robust Small Area Estimation Using a Mixture Model. In Proceedings of the 58th World Statistics Congress, pages 1132–1141, Dublin, Ireland. International Statistical Institute. https://2011.isiproceedings.org/papers/ 450026.pdf.spa
dc.relation.referencesGiusti, C., Masserini, L., and Pratesi, M. (2017). Local Comparisons of Small Area Estimates of Poverty: An Application Within the Tuscany Region in Italy. Social Indicators Research, 131:235–254. doi: 10.1007/s11205-015-1193-1.spa
dc.relation.referencesGuadarrama, M., Molina, I., and Rao, J. N. K. (2016). A Comparison Of Small Area Estimation Methods For Poverty Mapping. Econstor, 17(1):41–66. doi 10.21307/stattrans- 2016-005.spa
dc.relation.referencesGutiérrez, A. (2021). El enfoque de CEPAL en el mapeo de la pobreza. https://www. cepal.org/sites/default/files/presentations/eclac-approach-to-poverty-_ mapping-jul-2021.pdf.spa
dc.relation.referencesGutiérrez, A., Mancero, X., and Guerrero, S. (2022). Poverty mapping in Latin America: ECLAC experiences on small area estimation. Statistical Journal of the IAOS, 38(3):1021– 1033. doi: 10.3233/SJI-220037.spa
dc.relation.referencesHarmening, S., Kreutzmann, A., Pannier, S., Salvati, N., and Schmid, T. (2020). emdi 2.0.1: A Framework for Producing Small Area Estimates based on Area-Level Models in R. https://r-project.ro/conference2020/presentations/emdi_2_0_1_A_Framework_ for_Producing_Small_Area_Estimates_based_on_Area-Level_Models_in_R.pdfspa
dc.relation.referencesHarmening, S., Kreutzmann, A.-K., Schmidt, S., Salvati, N., and Schmid, T. (2023). A framework for producing small area estimates based on area-level models in r. The R Journal, 15:316–341. doi: 10.32614/RJ-2023-039.spa
dc.relation.referencesHernández, R., Fernández, C., and Baptista, M. (2014). Metodología de la Investigación. McGraw Hill, México D.F., sexta edition. https://www.esup.edu.pe/wp-content/ uploads/2020/12/2.%20Hernandez,%20Fernandez%20y%20Baptista-MetodologÃŋa% 20Investigacion%20Cientifica%206ta%20ed.pdf.spa
dc.relation.referencesKreutzmann, A., Pannier, S., Rojas, N., Schmid, T., Templ, M., and Tzavidis, N. (2019). The R Package emdi for Estimating and Mapping Regionally Disaggregated Indicators. Journal of Statistical Software, 91(7):1–33. doi: 10.18637/jss.v091.i07.spa
dc.relation.referencesKubacki, J. and Jędrzejczak, A. (2016). Small Area Estimation of Income Under Spatial SAR Model. Statistics in Transition, 17(3):365–390. doi: 10.21307/stattrans-2016-028.spa
dc.relation.referencesMarhuenda, Y., Molina, I., and Morales, D. (2013). Small area estimation with spatiotemporal Fay–Herriot models. Computational Statistics and Data Analysis, 58:308–325. doi: 10.1016/j.csda.2012.09.002.spa
dc.relation.referencesMarhuenda, Y., Morales, D., and Pardo, M. (2014). Information criteria for Fay–Herriot model selection. Computational Statistics and Data Analysis, 70:268–280. doi: 10.1016/j.csda.2013.09.016.spa
dc.relation.referencesMarhuenda, Y., Morales, D., and Pardo, M. (2016). Tests for the variance parameter in the Fay–Herriot model. Statistics, 50(1):27–42. doi: 10.1080/02331888.2015.1016026.spa
dc.relation.referencesMasaki, T., Newhouse, D., Silwal, A., Bedada, A., and Engstrom, R. (2021). Small Area Estimation with Geospatial Data. https://cega.berkeley.edu/wp-content/uploads/ 2020/04/Newhouse_MeasureDev2020_Slides.pdf.spa
dc.relation.referencesMerfeld, J., Chen, H., Lahiri, P., and Newhouse, D. (2023). Small Area Estimation with Geospatial Data: A Primer. https://unstats.un.org/iswghs/documents/ geospatial-data-for-SAE-outline.pdf.spa
dc.relation.referencesMinisterio de Desarrollo Social de Chile (2013). Procedimiento de cálculo de la Tasa de Pobreza a nivel Comunal mediante la aplicación de Metodología de Estimación para Áreas Pequeñas (SAE). https://observatorio.ministeriodesarrollosocial.gob. cl/storage/docs/pobreza-comunal/2011/Procedimiento_de_calculo_de_la_Tasa_ de_Pobreza_a_nivel_Comunal_11feb13.pdf.spa
dc.relation.referencesMinisterio de Economía y Finanzas de Perú (n.d.). Métodos para medir Pobreza. https://www.mef.gob.pe/es/?option=com_content&language=es-ES&Itemid= 100412&lang=es-ES&view=article&id=370.spa
dc.relation.referencesMolina, I. (2019). Desagregación de datos en encuestas de hogares - Metodologías de estimación en áreas pequeñas. Number 97 in Estudios Estadísticos. Naciones Unidas, Santiago de Chile. https://repositorio.cepal.org/server/api/core/bitstreams/ 5792f51b-c686-4624-9673-6bf6f6fa0d9d/content.spa
dc.relation.referencesMolina, I. (2022). Disaggregating data in household survey: Using small area estimation methodologies. Number 97 in Statistics. ECLAC - UNFPA, Santiago de Chile. https://repositorio.cepal.org/server/api/core/bitstreams/ e4e38563-d196-4f01-b903-5f64faa6866b/content.spa
dc.relation.referencesMolina, I., Marín, M., and Rao, J. (2019). Small Area Estimation. https://en.eustat. eus/sem19_curso_areas_pequenas_i.pdf.spa
dc.relation.referencesMolina, I. and Morales, D. (2009). Small area estimation of poverty indicators. Boletín de Estadística e Investigación Operativa, 25(3):218–225. https://www.researchgate.net/ publication/28322424_Small_area_estimation_of_poverty_indicators.spa
dc.relation.referencesMolina, I., Nandram, B., and Rao, J. N. K. (2014). Small Area Estimation of General Parameters with Application to Poverty Indicators: A Hierarchical Bayes Approach. The Annals of Applied Statistics, 8(2):852–885. doi: 10.1214/13-AOAS702.spa
dc.relation.referencesMorales, D., Esteban, M., Pérez, and Hobza, T. (2021). A Course on Small Area Estimation and Mixed Models: Methods, Theory and Applications in R. Statistics for Social and Behavioral Sciences. Springer, Switzerland.spa
dc.relation.referencesMüller, S., Scealy, J., and Welsh, A. (2013). Model Selection in Linear Mixed Models. Statistical Science, 28(2):135–167. doi: 10.1214/12-STS410.spa
dc.relation.referencesNandy, A. (2013). An overview of Fay Herriot model with our package smallarea. https: //cran.r-project.org/web/packages/smallarea/vignettes/vignette.pdf.spa
dc.relation.referencesNavarro, J. and Chávez, J. (2001). El Índice de Pobreza Foster Greer Thorbecke (FGT): Una Aplicación para Michoacán y sus Municipios, 1980-2000. Economía y Sociedad, 6(10):23– 48. https://dialnet.unirioja.es/servlet/articulo?codigo=5900498.spa
dc.relation.referencesNewhouse, D. (2024). New Developments in Small Area Estimation: A Practitioner’s Perspective. http://isi-iass.org/home/wp-content/uploads/ Presentation-for-IASS-0226.pdf.spa
dc.relation.referencesNovo, M. (2018). Selección de modelos para estimación de áreas pequeñas. Aplicación a datos socioeconómicos de la Comunidad de Galicia. Trabajo Fin de Máster, Universidad de Santiago de Compostela, Santiago de Compostela. http://eio.usc.es/pub/mte/ descargas/ProyectosFinMaster/Proyecto_1591.pdf.spa
dc.relation.referencesOpen Street Map (2024). Colombia. https://download.geofabrik.de/south-america/ colombia.html.spa
dc.relation.referencesOrganización de las Naciones Unidas (2014). Principios Fundamentales de las Estadísticas Oficiales. https://unstats.un.org/unsd/dnss/hb/S-fundamental%20principles_ A4-WEB.pdf.spa
dc.relation.referencesOrganización de las Naciones Unidas (2017). Anexo: Marco de indicadores mundiales para los Objetivos de Desarrollo Sostenible y metas de la Agenda 2030 para el Desarrollo Sostenible. https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework_ A.RES.71.313%20Annex.Spanish.pdf.spa
dc.relation.referencesOrtiz, F., Téllez, C., and Ramírez, N. (2024). A Review of the Use of Small Area Estimation in Colombia. Revista Colombiana de Estadística - Applied Statistics, 47(2):407–422. doi: 10.15446/rce.v47n2.112779.spa
dc.relation.referencesPratesi, M., Marchetti, S., Giusti, C., and Salvati, N. (2023). The Use of Spatial Information in Area-level Models: An Evaluation Based on Auxiliary Data Availability. Calcutta Statistical Association Bulletin, 75(2):155–172. doi: 10.1177/00080683231198589.spa
dc.relation.referencesPratesi, M., Quattrociocchi, L., Bertarelli, G., Gemignani, A., and Giusti, C. (2021). Spatial Distribution of Multidimensional Educational Poverty in Italy using Small Area Estimation. Social Indicators Research, 156:563–586. doi: 10.1007/s11205-020-02328-5.spa
dc.relation.referencesPratesi, M. and Salvati, N. (2009). Small Area Estimation in the Presence of Correlated Random Area Effects. Journal of Official Statistics, 25(1):37– 53. https://www.scb.se/contentassets/f6bcee6f397c4fd68db6452fc9643e68/ small-area-estimation-in-the-presence-of-correlated-random-area-effects. pdf.spa
dc.relation.referencesPusponegoro, N. and Rachmawati, R. (2018). Spatial Empirical Best Linear Unbiased Prediction in Small Area Estimation of Poverty. In Procedia Computer Science, volume 135, pages 712–718. Elsevier. doi: 10.1016/j.procs.2018.08.214.spa
dc.relation.referencesQiu, Y., Zhao, X., Fan, D., Li, S., and Zhao, Y. (2022). Disaggregating population data for assessing progress of SDGs: methods and applications. International Journal of Digital Earth, 15(1):2–29. doi: 10.1080/17538947.2021.2013553.spa
dc.relation.referencesRao, J. and Molina, I. (2015). Small Area Estimation. Wiley, New Jersey, United States, second edition.spa
dc.relation.referencesRisal, A. (2021). Expenditure Per Capita Model With Spatial Small Area Estimation. Parameter: Journal of Statistics,, 1(2):38–47. doi: 10.22487/27765660.2021.v1.i2.15502spa
dc.relation.referencesSalvati, N. (2004). Small Area Estimation by Spatial Models: the Spatial Empirical Best Linear Unbiased Prediction (Spatial EBLUP). https://local.disia.unifi.it/ pubblicazioni_DS/wp/2004/wp2004_03.pdf.spa
dc.relation.referencesSchork, J. (2022). Small Area Estimation Techniques | Analysis of Income, Poverty & Health. https://statisticsglobe.com/small-area-estimation.spa
dc.relation.referencesSikov, A. and Cerda, J. (2024). Prediction in non-sampled areas under spatial small area models. Statistical Methods & Applications. doi: 10.1007/s10260-024-00754-0.spa
dc.relation.referencesSáenz, H. (2016). Revisando los métodos de agregación de unidades espaciales: MAUP, algoritmos y un breve ejemplo. Estudios demográficos y urbanos, 31(2):385–411. https: //www.scielo.org.mx/pdf/educm/v31n2/0186-7210-educm-31-02-00385.pdf.spa
dc.relation.referencestimeseriesreasoning.com (n.d.). A Tutorial On Generalized Least Squares Estimation Using Python And Statsmodels. https://timeseriesreasoning.com/contents/ generalized-least-squares-tutorial/.spa
dc.relation.referencesTzavidis, N., Zhang, L., Luna, A., Schmid, T., and Rojas, N. (2018). From Start to Finish: A Framework for the Production of Small Area Official Statistics. Journal of the Royal Statistical Society, 181(4):927–979. doi: 10.1111/rssa.12364.spa
dc.relation.referencesTéllez, C. (2020). Estimación de áreas pequeñas utilizando imputación múltiple en modelos logísticos de tres parámetros. Tesis de grado para optar al título de Doctor en Ciencias - Estadística, Universidad Nacional de Colombia, Bogotá D.C. https://repositorio. unal.edu.co/handle/unal/78956.spa
dc.relation.referencesUnidad Administrativa Especial de Catastro Distrital (n.d.). Unidades de Planeamiento Zonal -UPZ. https://www.catastrobogota.gov.co/glosario-catastral/ unidades-de-planeamiento-zonal-upz.spa
dc.relation.referencesUnidad Administrativa Especial de Catastro Distrital - UAECD (2024). Datos Abiertos Bogotá. https://datosabiertos.bogota.gov.co/.spa
dc.relation.referencesVeijanen, A. and Lehtonen, R. (2011). Deliverable 2.2: Small Area Estimation of Indicators on Poverty and Social Exclusion. Technical report, European Comission. https://www.uni-trier.de/fileadmin/fb4/projekte/SurveyStatisticsNet/ Ameli_Delivrables/AMELI-WP2-D2.2-supplement-20110402.pdf.spa
dc.relation.referencesWakefield, J. (2022). Lecture 2: Area-Level Modeling. http://faculty.washington.edu/ jonno/SAEmaterial/2022-SISCER-SAE-area-level.pdf.spa
dc.relation.referencesWarnholz, S. (2016). Small Area Estimation Using Robust Extensions to Area Level Models: Theory, implementation and simulation studies. Doctor Degree, Universitat Berlin, Berlín, Alemania. https://refubium.fu-berlin.de/bitstream/handle/fub188/9706/main. pdf;jsessionid=B312ECC4C90A919DB948EA9442D3AFAA?sequence=1.spa
dc.relation.referencesWorldPop (2024). WorldPop gridded population estimate datasets and tools. How are they different and which should I use? https://www.worldpop.org/methods/populations/.spa
dc.rightsAtribución-NoComercial 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5/co/*
dc.subject.keywordSample survey, small-area estimation, best unbiased linear estimator, Fay- Herriot model, monetary poverty.spa
dc.subject.proposalEncuesta por muestreo, estimación de áreas pequeñas, mejor estimador lineal insesgado, modelo Fay-Herriot, pobreza monetaria.spa
dc.titleAproximación espacial sobre la pobreza monetaria en Bogotá: una aplicación desde la estimación en áreas pequeñasspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2024carlosduran.pdf
Tamaño:
2.42 MB
Formato:
Adobe Portable Document Format
Descripción:
2024carlosduran.pdf
Thumbnail USTA
Nombre:
CartaFacultad2024carlosduran.pdf
Tamaño:
27.81 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de la facultad
Thumbnail USTA
Nombre:
CartaAutorización2024carlosduran.pdf
Tamaño:
324.53 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta autorización

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: