Descripción de la cirugía endodóntica guiada con navegación estática
dc.contributor.advisor | Serpa, Maria Fernanda | |
dc.contributor.advisor | Chaves Cabrera, Angela Maria | |
dc.contributor.author | Alzate Guerrero, Monica Amparo | |
dc.contributor.author | Rodriguez Granados, Laura Ximena | |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2022-06-10T14:30:58Z | |
dc.date.available | 2022-06-10T14:30:58Z | |
dc.date.issued | 2022-06-03 | |
dc.description | Antecedentes: La cirugía guiada con navegación estática es una técnica mínimamente invasiva que encamina al operador a obtener una vía de inserción más precisa y lograr una cicatrización más rápida de la herida, con una tasa de éxito significativamente mayor que la técnica de cirugía perirradicular tradicional. Objetivo: Describir los pasos para realizar la cirugía guiada con navegación estática, anillo guía y trefina con base en la evidencia científica. Métodos de búsqueda: Se diseñó una estrategia de búsqueda entre los años 2011 al 2021, para artículos publicados en PubMed, Epistemonikos, Cochrane, Web Of Sciencie y Embase. Los criterios de selección fueron estudios que hablen sobre el procedimiento de cirugía endodóntica guiada publicados en los últimos 10 años, revisiones sistemáticas, estudios in vitro, reportes de casos y series de casos. La evaluación de la calidad metodológica, riesgo de sesgo y extracción de datos se realizaron de forma independiente y por duplicado. Los resultados se expresaron utilizando la guía PRISMA y la herramienta realizada para reportes de casos y estudios in vitro. Resultados: Se obtuvieron 11 estudios para la revisión donde se describieron los pasos requeridos en la cirugía guiada con navegación estática, que consisten en escaneo intraoral o impresión con silicona para la obtención del archivo de estándar de lenguaje triangular (STL) o del archivo poligonal (PLY), tomografía para obtención de los archivos de imagen digital y comunicación en medicina (DICOM), luego el acople de los 2 archivos en un software, donde primero se importa el DICOM y luego el STL o PLY, posteriormente la creación, exportación e importación de la guía para así iniciar con el procedimiento quirúrgico. Conclusiones: La osteotomía y apicectomía guiada con una plantilla quirúrgica impresa en 3D disminuye el tiempo operatorio, reduce las complicaciones posoperatorias y mejora la cicatrización. Aunque la fabricación en 3D de plantillas quirúrgicas es un proceso que requiere más tiempo, la duración del procedimiento quirúrgico se reduce, beneficiando la comodidad y seguridad del paciente. Palabras claves. Cirugía guiada, impresoras 3D, osteotomía, trefinas, anillo, cirugía endodóntica guiada y software. | spa |
dc.description.abstract | Background: Static navigation assisted guided surgery is a minimally invasive technique that directs the operator to obtain a more precise insertion pathway and achieve faster wound healing, with a significantly higher success rate than the traditional apical surgery technique. Objective: To describe the steps to perform static navigation assisted surgery with guide ring and trephine based on scientific evidence. Search methods: A search strategy was designed from 2011 to 2021 for articles published in PubMed, Epistemonikos, Cochrane, Web Of Sciencie and Embase. The selection criteria were studies on the guided endodontic surgery procedure published in the last 10 years, systematic reviews, in vitro studies, case reports and case series. The evaluation of methodological quality, risk of bias and data extraction were performed independently and in duplicate. The results were expressed using the PRISMA guide and the tool developed for case reports and in vitro studies. Results: Eleven studies were obtained for review where the steps required in static navigation assisted surgery were described, consisting of intraoral scanning or silicone impression for obtaining the triangular language standard (STL) file or polygonal file (PLY), tomography to obtain the digital image and communication in medicine (DICOM) files, then the coupling of the 2 files in a software, where first the DICOM is imported and then the STL or PLY, then the creation, export and import of the guide to start the surgical procedure. Conclusions: Guided osteotomy and apicoectomy with a 3D printed surgical template decreases operative time, reduces postoperative complications, and improves healing. Although 3D fabrication of surgical templates is a more time-consuming process, the duration of the surgical procedure is reduced, benefiting patient comfort and safety. | spa |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Especialista en Endodoncia | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Alzate Guerrero, M.A. y Rodriguez Granados, L.X. (2022). Descripción de la cirugía endodóntica guiada con navegación estática. [Trabajo de especialización]. Universidad Santo Tomás. Bucaramanga, Colombia. | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/44873 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Odontología | spa |
dc.publisher.program | Especialización Endodoncia | spa |
dc.relation.references | Abella, F., De Ribot, J., Doria, G., Duran-Sindreu, F., & Roig, M. (2014). Applications of piezoelectric surgery in endodontic surgery: A literature review. Journal of Endodontics, 40(3), 325–332. https://doi.org/10.1016/j.joen.2013.11.014 | spa |
dc.relation.references | Ackerman, S., Aguilera, F. C., Buie, J. M., Glickman, G. N., Umorin, M., Wang, Q., & Jalali, P. (2019). Accuracy of 3-dimensional–printed Endodontic Surgical Guide: A Human Cadaver Study. Journal of Endodontics, 45(5), 615–618. https://doi.org/10.1016/j.joen.2019.02.005 | spa |
dc.relation.references | Ahn, S. Y., Kim, N. H., Kim, S., Karabucak, B., & Kim, E. (2018). Computer-aided Design/Computer-aided Manufacturing–guided Endodontic Surgery: Guided Osteotomy and Apex Localization in a Mandibular Molar with a Thick Buccal Bone Plate. Journal of Endodontics, 44(4), 665–670. https://doi.org/10.1016/j.joen.2017.12.009 | spa |
dc.relation.references | Anderson, J., Wealleans, J., & Ray, J. (2018). Endodontic applications of 3D printing. International Endodontic Journal, 51(9), 1005–1018. https://doi.org/10.1111/iej.12917 | spa |
dc.relation.references | Antal, M., Nagy, E., Sanyó, L., & Braunitzer, G. (2020). Digitally planned root end surgery with static guide and custom trephine burs: A case report. International Journal of Medical Robotics and Computer Assisted Surgery, 16(4). https://doi.org/10.1002/rcs.2115 | spa |
dc.relation.references | Arefin, A. M. E., Khatri, N. R., Kulkarni, N., & Egan, P. F. (2021). Polymer 3D Printing Review : Materials , Process , and Design Strategies for Medical Applications. 1–24. | spa |
dc.relation.references | Ballesteros, L. C., Delgado de Paz, G. A., & Estupiñan, L. S. (2018). Tecnicas de fresado con fresa unica y multiples para la colocacion de implantes dentales segun el tipo de hueso: Revision sistematica de la literatura. 1–69. | spa |
dc.relation.references | Barone, C., Dao, T. T., Basrani, B. B., Wang, N., & Friedman, S. (2010). Treatment Outcome in Endodontics: The Toronto Study-Phases 3, 4, and 5: Apical Surgery. Journal of Endodontics, 36(1), 28–35. https://doi.org/10.1016/j.joen.2009.09.001 | spa |
dc.relation.references | Brief, J., Edinger, D., Hassfeld, S., & Eggers, G. (2005). Accuracy of image-guided implantology. Clinical Oral Implants Research, 16(4), 495–501. https://doi.org/10.1111/j.1600-0501.2005.01133.x | spa |
dc.relation.references | Brief, J., Edinger, D., Hassfeld, S., & Eggers, G. (2005). Accuracy of image-guided implantology. Clinical Oral Implants Research, 16(4), 495–501. https://doi.org/10.1111/j.1600-0501.2005.01133.x | spa |
dc.relation.references | Cassetta, M., Giansanti, M., Di Mambro, A., & Stefanelli, L. (2014). Accuracy of Positioning of Implants Inserted Using a Mucosa-Supported Stereolithographic Surgical Guide in the Edentulous Maxilla and Mandible. The International Journal of Oral & Maxillofacial Implants, 29(5), 1071–1078. https://doi.org/10.11607/jomi.3329 | spa |
dc.relation.references | Connert, T., Krug, R., Eggmann, F., Emsermann, I., ElAyouti, A., Weiger, R., Kühl, S., & Krastl, G. (2019). Guided Endodontics versus Conventional Access Cavity Preparation: A Comparative Study on Substance Loss Using 3-dimensional–printed Teeth. Journal of Endodontics, 45(3), 327–331. https://doi.org/10.1016/j.joen.2018.11.006 | spa |
dc.relation.references | D.H, E. (2007). Surgical endodontics. Oral and Maxillofacial Surgery, 12, 67–82. https://doi.org/10.1016/B978-0-443-10073-4.50010-0 | spa |
dc.relation.references | Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British Dental Journal, 219(11), 521–529. https://doi.org/10.1038/sj.bdj.2015.914 | spa |
dc.relation.references | Evans, G. E., Bishop, K., & Renton, T. (2012). Guidelines for surgical procedures. The Royal College of Surgeons Of England, 2, 1–7. | spa |
dc.relation.references | Faggion, C. M. (2012). Guidelines for reporting pre-clinical in vitro studies on dental materials. Journal of Evidence-Based Dental Practice, 12(4), 182–189. https://doi.org/10.1016/j.jebdp.2012.10.001 | spa |
dc.relation.references | Featherstone, J. D. B., Roth, J. R., Crall, J. J., Berkowitz, R. J., Denbesten, P., Adair, S. M., Glassman, P., & Miller, C. (2003). Caries Moving from Restoration towards Prevention part 1. Journal of the California Dental Association, 31(2). | spa |
dc.relation.references | Floratos, S., & Kim, S. (2017). Modern Endodontic Microsurgery Concepts: A Clinical Update. Dental Clinics of North America, 61(1), 81–91. https://doi.org/10.1016/j.cden.2016.08.007 | spa |
dc.relation.references | Fonseca Tavares, W. L., Diniz Viana, A. C., de Carvalho Machado, V., Feitosa Henriques, L. C., & Ribeiro Sobrinho, A. P. (2018). Guided Endodontic Access of Calcified Anterior Teeth. Journal of Endodontics, 44(7), 1195–1199. https://doi.org/10.1016/j.joen.2018.04.014 | spa |
dc.relation.references | Gagnier, J. J., Kienle, G., Altman, D. G., Moher, D., Sox, H., & Riley, D. (2013). The CARE guidelines: Consensus-based clinical case reporting guideline development. Forschende Komplementarmedizin, 20(5), 385–386. https://doi.org/10.7453/gahmj.2013.008 | spa |
dc.relation.references | Gambarini, G., Galli, M., Stefanelli, L. V., Di Nardo, D., Morese, A., Seracchiani, M., De Angelis, F., Di Carlo, S., & Testarelli, L. (2019). Endodontic Microsurgery Using Dynamic Navigation System: A Case Report. Journal of Endodontics, 45(11), 1397-1402.e6. https://doi.org/10.1016/j.joen.2019.07.010 | spa |
dc.relation.references | Garcia-Sanchez, A., Mainkar, A., Ordonez, E., Sanchez, S., & Weinstein, G. (2019). 3D-printed guide for endodontic surgery. Clinical Dentistry Reviewed, 3(1), 1–6. https://doi.org/10.1007/s41894-019-0048-6 | spa |
dc.relation.references | Gaston, L., Costa, D., & Ibanez, J. C. (2020). Protocolo T . A . C para la confección de guías quirúrgicas de precisión en Implantología. December. | spa |
dc.relation.references | Giacomino, C. M., Ray, J. J., & Wealleans, J. A. (2018). Targeted Endodontic Microsurgery: A Novel Approach to Anatomically Challenging Scenarios Using 3-dimensional–printed Guides and Trephine Burs—A Report of 3 Cases. Journal of Endodontics, 44(4), 671–677. https://doi.org/10.1016/j.joen.2017.12.019 | spa |
dc.relation.references | Gilheany, P. A., Figdor, D., & Tyas, M. J. (1994). Apical dentin permeability and microleakage associated with root end resection and retrograde filling. Journal of Endodontics, 20(1), 22–26. https://doi.org/10.1016/S0099-2399(06)80022-1 | spa |
dc.relation.references | Gutmann, J. L., & Harrison, J. W. (1985). Posterior endodontic surgery: anatomical considerations and clinical techniques. International Endodontic Journal, 18(1), 8–34. https://doi.org/10.1111/j.1365-2591.1985.tb00415.x | spa |
dc.relation.references | Hawkins, T. K., Wealleans, J. A., Pratt, A. M., & Ray, J. J. (2020). Targeted endodontic microsurgery and endodontic microsurgery: a surgical simulation comparison. International Endodontic Journal, 53(5), 715–722. https://doi.org/10.1111/iej.13243 | spa |
dc.relation.references | Hirsch, V., & Kohli, R. (2016). Apicoectomy of maxillary anterior teeth through a piezoelectric bony-window osteotomy : two case reports introducing a new technique to preserve cortical bone. 7658, 310–315. | spa |
dc.relation.references | Holst, S., Blatz, M. B., & Eitner, S. (2007). Precision for Computer-Guided Implant Placement: Using 3D Planning Software and Fixed Intraoral Reference Points. Journal of Oral and Maxillofacial Surgery, 65(3), 393–399. https://doi.org/10.1016/j.joms.2006.10.050 | spa |
dc.relation.references | Kapshe, N., Pujar, M., & Satyam, J. (2018). Cone Beam Computed Tomography: A review. Dental Clinics of North America, 62(3), 361–391. https://doi.org/10.1016/j.cden.2018.03.002 | spa |
dc.relation.references | Khoury, F., & Hensher, R. (1987). The bony lid approach for the apical root resection of lower molars. Int.J.Oral Maxillofac, 170, 166–170. | spa |
dc.relation.references | Kim, D., Ku, H., Nam, T., Yoon, T. C., Lee, C. Y., & Kim, E. (2016). Influence of Size and Volume of Periapical Lesions on the Outcome of Endodontic Microsurgery: 3-Dimensional Analysis Using Cone-beam Computed Tomography. Journal of Endodontics, 42(8), 1196–1201. https://doi.org/10.1016/j.joen.2016.05.006 | spa |
dc.relation.references | Kim, G. B., Lee, S., Kim, H., Yang, D. H., Kim, Y. H., Kyung, Y. S., Kim, C. S., Choi, S. H., Kim, B. J., Ha, H., Kwon, S. U., & Kim, N. (2016). Three-dimensional printing: Basic principles and applications in medicine and radiology. Korean Journal of Radiology, 17(2), 182–197. https://doi.org/10.3348/kjr.2016.17.2.182 | spa |
dc.relation.references | Kim, J.-E., Shim, J.-S., & Shin, Y. (2019). A new minimally invasive guided endodontic microsurgery by cone beam computed tomography and 3-dimensional printing technology. Restorative Dentistry & Endodontics, 44(3), 1–7. https://doi.org/10.5395/rde.2019.44.e29 | spa |
dc.relation.references | Kim, S., & Kratchman, S. (2006). Modern Endodontic Surgery Concepts and Practice: A Review. Journal of Endodontics, 32(7), 601–623. https://doi.org/10.1016/j.joen.2005.12.010 | spa |
dc.relation.references | Kumar, D., & Priscilla Antony, S. D. (2018). Calcified canal and negotiation-A review. Research Journal of Pharmacy and Technology, 11(8), 3727–3730. https://doi.org/10.5958/0974-360X.2018.00683.2 | spa |
dc.relation.references | Kumar, M., Shanavas, M., Sidappa, A., & Kiran, M. (2015). Cone beam computed tomography - know its secrets. Journal of International Oral Health : JIOH, 7(2), 64–68. http://www.ncbi.nlm.nih.gov/pubmed/25859112%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4377156 | spa |
dc.relation.references | Lee, S.-M., Yu, Y., Wang, Y., Kim, E., & Kim, S. (2020). The Application of “ Bone Window ” Technique in Endodontic Microsurgery. 46(6), 872–880. | spa |
dc.relation.references | Lio, F., Mampieri, G., Mazzetti, V., Leggeri, A., & Arcuri, L. (2021). Guided endodontic microsurgery in apicoectomy: a review (pp. 47–55). | spa |
dc.relation.references | Liu, Y., Liao, W., Jin, G., Yang, Q., & Peng, W. (2014). Additive manufacturing and digital design assisted precise apicoectomy: A case study. Rapid Prototyping Journal, 20(1), 33–40. https://doi.org/10.1108/RPJ-06-2012-0056 | spa |
dc.relation.references | Lofthag-Hansen, S., Huumonen, S., Gröndahl, K., & Gröndahl, H. G. (2007). Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 103(1), 114–119. https://doi.org/10.1016/j.tripleo.2006.01.001 | spa |
dc.relation.references | Marchack, C. B., & Chew, L. K. (2015). The 10 year evolution of guided surgery. March, 1–5. | spa |
dc.relation.references | Medina, Y. F., & Quintana L, G. (2012). Importancia de desarrollar guías de práctica clínica en reumatología. Revista Colombiana de Reumatologia, 19(2), 69–70. https://doi.org/10.1016/S0121-8123(12)70027-0 | spa |
dc.relation.references | Niemczyk, S. P. (2010). Essentials of Endodontic Microsurgery. Dental Clinics of North America, 54(2), 375–399. https://doi.org/10.1016/j.cden.2009.12.002 | spa |
dc.relation.references | Patel, S., Brown, J., Semper, M., Abella, F., & Mannocci, F. (2019). European Society of Endodontology position statement: Use of cone beam computed tomography in Endodontics: European Society of Endodontology (ESE) developed by: International Endodontic Journal, 52(12), 1675–1678. https://doi.org/10.1111/iej.13187 | spa |
dc.relation.references | Pinsky, H. M., Champleboux, G., & Sarment, D. P. (2007). Periapical Surgery Using CAD/CAM Guidance: Preclinical Results. Journal of Endodontics, 33(2), 148–151. https://doi.org/10.1016/j.joen.2006.10.005 | spa |
dc.relation.references | Popowicz, W., Palatyńska-Ulatowska, A., & Kohli, M. R. (2019). Targeted Endodontic Microsurgery: Computed Tomography–based Guided Stent Approach with Platelet-rich Fibrin Graft: A Report of 2 Cases. Journal of Endodontics, 45(12), 1535–1542. https://doi.org/10.1016/j.joen.2019.08.012 | spa |
dc.relation.references | Schneider, D., Marquardt, P., Zwahlen, M., & Jung, R. E. (2009). A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clinical Oral Implants Research, 20(SUPPL. 4), 73–86. https://doi.org/10.1111/j.1600-0501.2009.01788.x | spa |
dc.relation.references | Scottish Intercollegiate Guidelines Network. (2011). Sign 50. Diversity, November, 2–105. www.sign.ac.uk/guidelines/published/numlist.html. | spa |
dc.relation.references | Shah, P., & Chong, B. S. (2018). 3D imaging, 3D printing and 3D virtual planning in endodontics. Clinical Oral Investigations, 22(2), 641–654. https://doi.org/10.1007/s00784-018-2338-9 | spa |
dc.relation.references | Shinbori, N., Grama, A. M., Patel, Y., Woodmansey, K., & He, J. (2015). Clinical Outcome of Endodontic Microsurgery That Uses EndoSequence BC Root Repair Material as the Root-end Filling Material. Journal of Endodontics, 41(5), 607–612. https://doi.org/10.1016/j.joen.2014.12.028 | spa |
dc.relation.references | Siragusa, C., Alfie, N., Gimenez, M., & Rodríguez, P. (2021). Microcirugía Endodóntica con Planificación Digital y Guía Quirúrgica. Caso Clínico Endodontic Microsurgery with Digital Planning and Surgical Guide. Clinical Case. 13–20. | spa |
dc.relation.references | Strbac, G. D., Schnappauf, A., Giannis, K., Moritz, A., & Ulm, C. (2017). Guided Modern Endodontic Surgery: A Novel Approach for Guided Osteotomy and Root Resection. Journal of Endodontics, 43(3), 496–501. https://doi.org/10.1016/j.joen.2016.11.001 | spa |
dc.relation.references | Tavares, W. L. F., Fonseca, F. O., Maia, L. M., de Carvalho Machado, V., França Alves Silva, N. R., Junior, G. M., & Ribeiro Sobrinho, A. P. (2020). 3D Apicoectomy Guidance: Optimizing Access for Apicoectomies. Journal of Oral and Maxillofacial Surgery, 78(3), 357.e1-357.e8. https://doi.org/10.1016/j.joms.2019.10.009 | spa |
dc.relation.references | Torabi, K., Farjood, E., & Hamedani, S. (2015). Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature. Journal of Dentistry (Shiraz, Iran), 16(1), 1–9. http://www.ncbi.nlm.nih.gov/pubmed/25759851%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4345107 | spa |
dc.relation.references | Tsesis, I., Rosen, E., Schwartz-Arad, D., & Fuss, Z. (2006). Retrospective Evaluation of Surgical Endodontic Treatment: Traditional versus Modern Technique. Journal of Endodontics, 32(5), 412–416. https://doi.org/10.1016/j.joen.2005.10.051 | spa |
dc.relation.references | Tsesis, I., Rosen, E., Taschieri, S., Telishevsky Strauss, Y., Ceresoli, V., & Del Fabbro, M. (2013). Outcomes of surgical endodontic treatment performed by a modern technique: An updated meta-analysis of the literature. Journal of Endodontics, 39(3), 332–339. https://doi.org/10.1016/j.joen.2012.11.044 | spa |
dc.relation.references | Van der Meer, W. J., Vissink, A., Ng, Y. L., & Gulabivala, K. (2016). 3D Computer aided treatment planning in endodontics. Journal of Dentistry, 45, 67–72. https://doi.org/10.1016/j.jdent.2015.11.007 | spa |
dc.relation.references | Van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dental.2011.10.014 | spa |
dc.relation.references | Vermeulen, J. (2017). The Accuracy of Implant Placement by Experienced Surgeons: Guided vs Freehand Approach in a Simulated Plastic Model. The International Journal of Oral & Maxillofacial Implants, 32(3), 617–624. https://doi.org/10.11607/jomi.5065 | spa |
dc.relation.references | Weinstein, T., Rosano, G., Del Fabbro, M., & Taschieri, S. (2010). Endodontic treatment of a geminated maxillary second molar using an endoscope as magnification device. International Endodontic Journal, 43(5), 443–450. https://doi.org/10.1111/j.1365-2591.2010.01714.x | spa |
dc.relation.references | White, S. C., & Pharoah, M. J. (2008). The Evolution and Application of Dental Maxillofacial Imaging Modalities. Dental Clinics of North America, 52(4), 689–705. https://doi.org/10.1016/j.cden.2008.05.006 | spa |
dc.relation.references | Wu, D., Zhou, L., Yang, J., Zhang, B., Lin, Y., Chen, J., Huang, W., & Chen, Y. (2020). Accuracy of dynamic navigation compared to static surgical guide for dental implant placement. International Journal of Implant Dentistry, 6(1). https://doi.org/10.1186/s40729-020-00272-0 | spa |
dc.relation.references | Zehnder, M. S., Connert, T., Weiger, R., Krastl, G., & Kühl, S. (2016). Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. International Endodontic Journal, 49(10), 966–972. https://doi.org/10.1111/iej.12544 | spa |
dc.rights | Atribución-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/2.5/co/ | * |
dc.subject.keyword | Guided endodontic surgery and software | spa |
dc.subject.keyword | Trephine | spa |
dc.subject.keyword | Guided surgery | spa |
dc.subject.lemb | Pulpa dental - enfermedades | spa |
dc.subject.lemb | Exodoncia | spa |
dc.subject.lemb | Cirugía dental | spa |
dc.subject.lemb | Anestesia en odontología | spa |
dc.subject.proposal | Cirugía endodóntica guiada y software | spa |
dc.subject.proposal | Trefinas | spa |
dc.subject.proposal | Cirugía guiada | spa |
dc.title | Descripción de la cirugía endodóntica guiada con navegación estática | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Especialización | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2022AlzateMonica.pdf
- Tamaño:
- 1.34 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2022AlzateMonica1.pdf
- Tamaño:
- 119.5 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Aprobacion de la facultad

- Nombre:
- 2022AlzateMónica2.pdf
- Tamaño:
- 141.87 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Acuerdo de publicacion
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: