Futuro del Análisis de Datos: Una Revisión Sistemática de Integración y Estrategias Innovadoras

dc.contributor.advisorGuío Ávila, Henry Alfonso
dc.contributor.authorAmézquita Núñez, Juan David
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001519211Spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=gqWnDVQAAAAJSpa
dc.contributor.orcidhttps://orcid.org/0000-0003-1343-4302Spa
dc.coverage.campusCRAI-USTA Tunjaspa
dc.date.accessioned2024-06-19T20:40:18Z
dc.date.available2024-06-19T20:40:18Z
dc.date.issued2024
dc.descriptionEl futuro del análisis de datos representa un camino creciente, con la combinación de nuevas tecnologías y métodos: Inteligencia Artificial (IA) y el aprendizaje automático, cambiando la interpretación de muchos datos. Este campo en expansión reta los límites convencionales del análisis y fomenta un enfoque holístico y multidisciplinario que no favorece la toma de decisiones fundamentada en datos, sino que se centra en cuestiones éticas y preocupaciones de seguridad. A medida que se avanza, el análisis de datos demostrará ser una herramienta esencial para el progreso en todos los aspectos de la sociedad y los negocios. El análisis de datos se está transformando en una disciplina que no solo impulsa la innovación tecnológica, sino que también fomenta un cambio cultural hacia la responsabilidad y la transparencia. La integración de la Inteligencia Artificial y el Machine Learning está redefiniendo los paradigmas de la privacidad y la ética, exigiendo un nuevo marco que equilibre el poder de los datos con los derechos individuales. A medida que esta disciplina evoluciona, se convierte en el núcleo de una sociedad informada y consciente, donde cada byte de información es una oportunidad para mejorar la vida humana y fortalecer las estructuras empresariales. Se utilizaron para las búsquedas la base de datos de Scopus.spa
dc.description.abstractThe future of data analysis represents a growing path, The integration of new technologies and methods, such as Artificial Intelligence and Machine Learning, is altering the interpretation of several data. This growing field challenges traditional analytical boundaries and promotes an integrated, multidisciplinary approach that does not promote data-driven decision making, but rather focuses on ethical issues and security concerns. As we move forward, data analytics will turn out to be a crucial instrument for progress in all aspects of society and business. Data analytics is becoming a discipline that not only drives technological innovation, but also fosters a cultural shift toward accountability and transparency. The incorporation of artificial intelligence and Machine Learning is redefining the paradigms of privacy and ethics, demanding a new framework that balances the power of data with individual rights. As this discipline evolves, it becomes the core of an informed and conscious society, where every bite of information is an opportunity to improve human life and strengthen business structures, Scopus databases were used for searches.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Informáticospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAmézquita,J.(2024).Futuro del Análisis de Datos: Una Revisión Sistemática de Integración y Estrategias Innovadoras. [Trabajo de Grado, Universidad Santo Tomás].Repositorio Institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/55676
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería de Sistemasspa
dc.publisher.programIngeniería Informáticaspa
dc.relation.referencesONU, “Influencia de las tecnologías digitales.” https://www.un.org/es/un75/impact-digital-technologiesspa
dc.relation.referencesM. Garouani, A. Ahmad, M. Bouneffa, M. Hamlich, G. Bourguin, and A. Lewandowski, “Towards big industrial data mining through explainable automated machine learning,” Int. J. Adv. Manuf. Technol., vol. 120, no. 1–2, pp. 1169–1188, 2022, doi: 10.1007/s00170-022-08761-9.spa
dc.relation.referencesZ. Ge, Z. Song, S. X. Ding, and B. Huang, “Data Mining and Analytics in the Process Industry: The Role of Machine Learning,” IEEE Access, vol. 5, pp. 20590–20616, 2017, doi: 10.1109/ACCESS.2017.2756872.spa
dc.relation.referencesJ. Luo, W. Zhuo, S. Liu, and B. Xu, “The Optimization of Carbon Emission Prediction in Low Carbon Energy Economy under Big Data,” IEEE Access, vol. 12, no. December 2023, pp. 14690–14702, 2024, doi: 10.1109/ACCESS.2024.3351468.spa
dc.relation.referencesC. Chang, W. Shi, Y. Wang, Z. Zhang, X. Huang, and Y. Jiao, “The path from task-specific to general purpose artificial intelligence for medical diagnostics: A bibliometric analysis,” Comput. Biol. Med., vol. 172, no. February, p. 108258, 2024, doi: 10.1016/j.compbiomed.2024.108258.spa
dc.relation.referencesJ. Kneifel, R. Roj, H. B. Woyand, R. Theiß, and P. Dültgen, “An IIoT-Device for Acquisition and Analysis of High-Frequency Data Processed by Artificial Intelligence,” Internet of Things, vol. 4, no. 3, pp. 244–264, 2023, doi: 10.3390/iot4030013.spa
dc.relation.referencesS. Trilles, S. S. Hammad, and D. Iskandaryan, “Anomaly detection based on Artificial Intelligence of Things: A Systematic Literature Mapping,” Internet of Things (Netherlands), vol. 25, no. October 2023, p. 101063, 2024, doi: 10.1016/j.iot.2024.101063.spa
dc.relation.referencesO. Cristina, “Análisis de inteligencia artificial: Cómo convertir datos en insights.” https://www.questionpro.com/blog/es/analisis-de-inteligencia artificial/spa
dc.relation.referencesA. Muruganantham, P. T. Nguyen, E. L. Lydia, K. Shankar, W. Hashim, and A. Maseleno, “Big data analytics and intelligence: A perspective for health care,” Int. J. Eng. Adv. Technol., vol. 8, no. 6 Special Issue, pp. 861–864, 2019, doi: 10.35940/ijeat.F1162.0886S19.spa
dc.relation.referencesR. Dwivedi, S. Nerur, and V. Balijepally, “Exploring artificial intelligence and big data scholarship in information systems: A citation, bibliographic coupling, and co-word analysis,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 2, 2023, doi: 10.1016/j.jjimei.2023.100185.spa
dc.relation.references10.1016/j.jjimei.2023.100185. Z. Gan and S. B. Tsai, “Research on the Optimization Method of Visual Effect of Outdoor Interactive Advertising Assisted by New Media Technology and Big Data Analysis,” Math. Probl. [12] [29] tendencias-de-analisis-de-datos-que-debes-tener-en-cuenta Eng., vol. 2021, 2021, doi: 10.1155/2021/5341523.spa
dc.relation.referencesS. O. Uwagbole, W. J. Buchanan, and L. Fan, “An applied pattern-driven corpus to predictive analytics in mitigating SQL injection attack,” Proc. - 2017 7th Int. Conf. Emerg. Secur. Technol. EST 2017, pp. 12–17, 2017, doi: 10.1109/EST.2017.8090392.spa
dc.relation.referencesG. Deng, M. Xie, C. Feng, T. Liu, and X. Zha, “Flight test data processing and analysis platform based on new generation information technology Design and Application,” 2022 Int. Conf. Sensing, Meas. Data Anal. Era Artif. Intell. ICSMD 2022 - Proc., pp. 1–5, 2022, doi: 10.1109/ICSMD57530.2022.10058336.spa
dc.relation.referencesJ. Li, “New Way of News Dissemination Based on Big Data Analysis and Visualization Technology,” Proc. - 2022 Int. Conf. Artif. Intell. Things Crowdsensing, AIoTCs 2022, pp. 436–440, 2022, doi: 10.1109/AIoTCs58181.2022.00074.spa
dc.relation.referencesW. Wei, “Automatic Design of Microcontroller System Simulation Based on Artificial Intelligence Technology and Data Intelligence Analysis,” Procedia Comput. Sci., vol. 228, pp. 966–973, 2023, doi: 10.1016/j.procs.2023.11.127.spa
dc.relation.referencesT. Wang, Y. Ma, Z. Wang, X. Wu, and L. Li, “User Behavior Analysis Based on Big Data and Artificial Intelligence,” Front. Artif. Intell. Appl., vol. 373, pp. 760–765, 2023, doi: 10.3233/FAIA230881.spa
dc.relation.referencesT. C. Radoi, “Artificial Intelligence in Data Analysis for Open Source Investigations,” 15th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2023 - Proc., pp. 1–6, 2023, doi: 10.1109/ECAI58194.2023.10193894.spa
dc.relation.referencesZ. Wen, S. Han, Y. Yu, X. Xiang, S. Lin, and X. Xu, “Empowering robust biometric authentication: The fusion of deep learning and security image analysis,” Appl. Soft Comput., vol. 154, no. December 2023, p. 111286, 2024, doi: 10.1016/j.asoc.2024.111286.spa
dc.relation.referencesA. I. Tolulope, M. Isaac, O. Timileyin, S. Seth, and O. Kingsley, “Artificial intelligence research in Nigeria: Topic modelling and scientometric analysis,” IAES Int. J. Artif. Intell., vol. 13, no. 1, pp. 597–609, 2024, doi: 10.11591/ijai.v13.i1.pp597-609.spa
dc.relation.referencesA. Nambiar, S. Harikrishnaa, and S. Sharanprasath, “Model agnostic explainable artificial intelligence tools for severity prediction and symptom analysis on Indian COVID-19 data,” Front. Artif. Intell., vol. 6, 2023, doi: 10.3389/frai.2023.1272506.spa
dc.relation.referencesL. Sujatha, V. P. Parandhaman, S. Bhat, A. Kalnawat, N. Nirmala Devi, and P. M. Murali, “Analysis of Artificial intelligence Financial Innovation System based on Big Data Technology,” 2nd Int. Conf. Autom. Comput. Renew. Syst. ICACRS 2023 - Proc., pp. 383–389, 2023, doi: 10.1109/ICACRS58579.2023.10404844.spa
dc.relation.referencesB. Ramos-Cruz, J. Andreu-Perez, and L. Martínez, “The cybersecurity mesh: A comprehensive survey of involved artificial intelligence methods, cryptographic protocols and challenges for future research,” Neurocomputing, vol. 581, no. February, p. 127427, 2024, doi: 10.1016/j.neucom.2024.127427.spa
dc.relation.referencesV. Khilenko et al., “Increasing the Speed of Banking Cybersecurity Systems Based on Intelligent Data Analysis and Artificial Intelligence Algorithms for Predicting Cyberattacks. I,” Cybern. Syst. Anal., vol. 59, no. 4, pp. 519–525, 2023, doi: 10.1007/s10559-023-00587-x.spa
dc.relation.referencesB. Shrestha, S. Cho, and C. Seo, “Special Issue on Data Analysis and Artificial Intelligence for IoT,” Appl. Sci., vol. 13, no. 11, pp. 1–5, 2023, doi: 10.3390/app13116401.spa
dc.relation.referencesS. Issn, “Revisión sistemática de teorías de integración de sistemas de,” 2018.spa
dc.relation.referencesX. Wang et al., “VIS+AI: integrating visualization with artificial intelligence for efficient data analysis,” Front. Comput. Sci., vol. 17, no. 6, 2023, doi: 10.1007/s11704-023-2691-y.spa
dc.relation.referencesK. Panetta, “Las 10 tendencias principales de datos y análisis de Gartner para 2021,” 2021. https://www.gartner.es/es/articulos/las-10-tendencias principales-de-datos-y-analisis-de-gartner-para-2021spa
dc.relation.referencesL. Goasduff, “12 tendencias de análisis de datos que debes tener en cuenta,” 2022. https://www.gartner.mx/tendencias-de-analisis-de-datos-que-debes-tener-en-cuentaes/articulos/12-spa
dc.relation.referencesP. R. Crespo, “5 pasos para implementar una estrategia de data y analítica exitosa,” 2024. https://dataiq.com.ar/blog/5-pasos-para implementar-una-estrategia-de-data-y-analitica-exitosa/spa
dc.relation.referencesY. Kong, Y. Yu, and X. Cui, “Requirement of densely distributed PV grid-connected data analysis technology in the future new power system,” Proc. - 2023 38th Youth Acad. Annu. Conf. Chinese Assoc. Autom. YAC 2023, pp. 1298–1302, 2023, doi: 10.1109/YAC59482.2023.10401470.spa
dc.relation.referencesdoi: 10.1109/YAC59482.2023.10401470. M. Gezimati and G. Singh, “Terahertz Data Extraction and Analysis Based on Deep Learning Techniques for Emerging Applications,” IEEE Access, vol. 12, no. January, pp. 21174 21198, 2024, doi: 10.1109/ACCESS.2024.3360930.spa
dc.relation.referencesM. K. Nallakaruppan, S. R. K. Somayaji, S. Fuladi, F. Benedetto, S. K. Ulaganathan, and G. Yenduri, “Enhancing Security of Host-Based Intrusion Detection Systems for the Internet of Things,” IEEE Access, vol. 12, no. December 2023, pp. 31788–31797, 2024, doi: 10.1109/ACCESS.2024.3355794.spa
dc.relation.referencespp. 31788–31797, 2024, doi: 10.1109/ACCESS.2024.3355794. Y. Huang, Z. Cheng, Q. Zhou, Y. Xiang, and R. Zhao, “Data mining algorithm for cloud network information based on artificial intelligence decision mechanism,” IEEE Access, vol. 8, pp. 53394–53407, 2020, doi: 10.1109/ACCESS.2020.2981632.spa
dc.relation.referencesZ. Wang, C., Zhang, Y., Ding, H., “Applied Mathematics and Nonlinear Sciences,” Appl. Math. Nonlinear Sci., vol. 8, no. 2, pp. 3383–3392, 2023.spa
dc.relation.referencesC. Machello, M. Bazli, A. Rajabipour, H. M. Rad, M. Arashpour, and A. Hadigheh, “Using machine learning to predict the long-term performance of fibre-reinforced polymer structures: A state-of-the-art review,” Constr. Build. Mater., vol. 408, no. December 2022, p. 133692, 2023, doi: 10.1016/j.conbuildmat.2023.133692.spa
dc.relation.references“Metodología de la investigación 7ma Ed - Hernandez Sampierispa
dc.relation.referencesC. Ortega, “¿Qué es la metodología de la investigación?,” 2024. https://www.questionpro.com/blog/es/metodologia-de-la investigacion/spa
dc.relation.referencesA. Amirteimoori, T. Allahviranloo, M. Zadmirzaei, and F. Hasanzadeh, “On the environmental performance analysis: A combined fuzzy data envelopment analysis and artificial intelligence algorithms,” Expert Syst. Appl., vol. 224, no. March, p. 119953, 2023, doi: 10.1016/j.eswa.2023.119953.spa
dc.relation.referencesX. Zhang, R. Yan, H. Lei, and E. Jia, “Artificial Intelligence in power multimodal data analysis,” Procedia Comput. Sci., vol. 221, pp. 1312–1320, 2023, doi: 10.1016/j.procs.2023.08.120.spa
dc.relation.referencesT. J. Trademark, “JupyterLab: A Next-Generation Notebook Interface,” 2024. https://jupyter.org/spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordData analysisspa
dc.subject.keywordTechnological revolutionspa
dc.subject.keywordArtificial Inteligencespa
dc.subject.keywordMachine Learningspa
dc.subject.proposalAnálisis de datosspa
dc.subject.proposalRevolución tecnológicaspa
dc.subject.proposalInteligencia Artificialspa
dc.subject.proposalMachine Learningspa
dc.titleFuturo del Análisis de Datos: Una Revisión Sistemática de Integración y Estrategias Innovadorasspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2024juanamezquita
Tamaño:
296.09 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartaderechosdeautor
Tamaño:
358.98 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartaaprobaciónfacultad
Tamaño:
280.62 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: