Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada

dc.contributor.advisorVargas Méndez, Leonor Yamilespa
dc.contributor.authorSuárez Alvarado, María Angélicaspa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2019-09-16T20:13:45Zspa
dc.date.available2019-09-16T20:13:45Zspa
dc.date.issued2019-09-09spa
dc.descriptionEl agua es un recurso esencial para conservar la vida de todos los seres que habitan el planeta, y se ha visto afectado por el uso indiscriminado de plaguicidas tóxicos. Según las estadísticas de comercialización de plaguicidas químicos de uso agrícola reportadas por el Instituto Colombiano Agropecuario (ICA), en el año 2016 en nuestro país se vendieron en total 57´284.087 litros de pesticidas, dentro de los cuales resaltan el paraquat con 4´471.787, el mancozeb con 2´764.047, el clorpirifos con 2´197.095 y el carbofurano con 126.21 L (Tabla 1); estos plaguicidas presentan alta toxicidad sobre mamíferos y todos los animales no-objetivo presentes en los ecosistemas. El uso desmedido e indiscriminado de pesticidas poco biodegradables usados en el control de plagas en el país, ha incrementado la producción de lixiviados; debido a que gran parte de ellos no permanecen en el cultivo, se filtran por el suelo y contaminan los acuíferos. Es por esto que en la presente investigación se empleó la fotocatálisis heterogénea como método de oxidación avanzada para degradar el carbofurano, el paraquat y el clorpirifos, los cuales son pesticidas empleados ampliamente en diversos cultivos implementados en Colombia, tales como la papa, caña de azúcar, café, cebolla, maíz, entre otros. Durante este proceso se sintetizó y metaló con hierro (III) las tetrafenilporfirina cloro (TClPP) y tetrafenilporfirina metoxi (TMeOPP) por medio de reacciones de condensación y coordinación reportadas en la literatura (Adler et al., 1967; Falvo et al 1999). Luego las porfirinas fueron soportadas en nanotubos de dióxido de titanio (TNT), lo cuales se prepararon por medio de una reacción hidrotermal, la cual se basa en un tratamiento alcalino de un precursor de óxido de titanio (Wu, et al., 2015). Como resultado, las modificaciones realizadas al dióxido de titanio comercial generaron un aumento en la producción de especies oxidantes cuando se sometía a radiación UV-Vis, así como la ampliación de la activación del semiconductor al rango visible. Los catalizadores sensibilizados con porfirinas libres TClPP/TNT y TMeOPP/TNT degradaron el carbofurano en un 83% y 85%; el paraquat en un 67% y 76%; y el clorpirifos en un 73% y 78%, respectivamente. La inclusión del hierro como centro metálico de los catalizadores incrementó el porcentaje de degradación promedio así: con el empleo de la TClPPFe/TNT se logró degradar el carbofurano, paraquat y clorpirifos en un 95%, 85% y 84% respectivamente, y mediante el uso de la TMeOPPFe/TNT se obtuvo un porcentaje de degradación del carbofurano de 89%, el paraquat 82%; y clorpirifos 84%.spa
dc.description.abstractWater is an essential resource to conserve the life of all beings that inhabit the planet and has been affected by the indiscriminate use of toxic pesticides. According to the commercialization statistics of chemical pesticides for agricultural use reported by the Colombian Agricultural Institute (ICA), in 2016 in our country a total of 57’284.087 liters of pesticides were sold, among which stand out the paraquat with 4'471.787 , mancozeb with 2’764.047, chlorpyrifos with 2’197.095 and carbofuran with 126.21 L (Table 1); These pesticides have high toxicity to mammals and all non-target animals present in ecosystems. The excessive and indiscriminate use of low biodegradable pesticides used in the control of pests in the country, has increased the production of leachates; Because a large part of them do not remain in the crop, they seep through the soil and contaminate the aquifers. That is why in the present investigation heterogeneous photocatalysis was used as an advanced oxidation method to degrade carbofuran, paraquat and chlorpyrifos, which are pesticides widely used in various crops implemented in Colombia, such as potatoes, sugar cane , coffee, onion, corn, among others. During this process, tetraphenylporphyrin chlorine (TClPP) and tetraphenylporphyrin methoxy (TMeOPP) were synthesized and metallized with iron (III) through condensation and coordination reactions reported in the literature (Adler et al., 1967; Falvo et al 1999). Porphyrins were then supported on titanium dioxide (TNT) nanotubes, which were prepared by hydrothermal reaction, which is based on an alkaline treatment of a titanium oxide precursor (Wu, et al., 2015). As a result, the modifications made to commercial titanium dioxide generated an increase in the production of oxidizing species when subjected to UV-Vis radiation, as well as the extension of semiconductor activation to the visible range. Catalysts sensitized with free porphyrins TClPP/TNT and TMeOPP/TNT degraded carbofuran in 83% and 85%; paraquat in 67% and 76%; and chlorpyrifos in 73% and 78%, respectively. The inclusion of iron as the metal center of the catalysts increased the average degradation percentage as follows: with the use of TClPPFe/TNT, it was possible to degrade carbofuran, paraquat and chlorpyrifos in 95%, 85% and 84% respectively, and through using the TMeOPPFe/TNT a percentage of carbofuran degradation of 89%, paraquat 82% was obtained; and chlorpyrifos 84%.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias y Tecnologías Ambientalesspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSuárez Alvarado, M. A. (2019). Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/18698
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programMaestría Ciencias y Tecnologías Ambientalesspa
dc.relation.referencesAcevedo, M. P., & Suárez, M. A. (2013). Fotoactividad de nanomateriales de TiO2 modificado con porfirinas de Cu (II) y sin metal: formación de •OH y su aplicación en la degradación del carbofuran (Trabajo de grado en pregrado en Química Ambiental). Universidad Santo Tomás, Bucaramanga, Colombia p.82-93.spa
dc.relation.referencesAdler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). A simplified synthesis for meso-tetraphenylporphine. Journal of Organic Chemistry, 32(2), 476-477. DOI: 10.1021/jo01288a053spa
dc.relation.referencesAdler, A. D., Longo, F. R., Kampas, F., & Kim, J. (1970). On the preparation of metalloporphrins. Journal of inorganic and nuclear chemistry, 32(7), 2443-2445. DOI: 10.1016/0022-1902(70)80535-8.spa
dc.relation.referencesAdler, A. D., Longo, F. R., & Shergalis, W. (1964). Mechanistic investigations of porphyrin syntheses. I. preliminary studies on ms-tetraphenylporphin. Journal of american chemical society, 86(15), 3145-3149. DOI: doi.org/10.1021/ja01069a035.spa
dc.relation.referencesAffam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130(1), 160-165. DOI: 10.1016/j.jenvman.2013.08.058spa
dc.relation.referencesAlza, W. R., García, J. M., & Chaparro, S. P. (2016). Determinación voltamétrica de paraquat y glifosato en aguas superficiales. Corpoica Ciencia y Tecnología Agropecuaria, 17(3), 331-332. DOI: 10.21930/rcta.vol17_num3_art:510spa
dc.relation.referencesAllinger, N. L. (1984). Heterociclos aromáticos y productos naturales que lo contienen. In Reverté (Ed.), Química Orgánica, Madrid, España, p.1077.spa
dc.relation.referencesAmiri, H., Nabizadeh, R., Silva, S., Jamaleddin, S., Yaghmaeian, K., Badiei, A., & Naddafi, K. (2018). Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicology and Environmental Safety, 147(1), 919-925. DOI: 10.1016 / j.ecoenv.2017.09.062spa
dc.relation.referencesBauer, C., Jacques, P., Kalt, A. (1999). Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Journal of chemical physics letters, 307(5) 397-406. DOI: 10.1016 / S0009-2614 (99) 00518-7.spa
dc.relation.referencesBeckie, H.J. (2011). Herbicide-resistant weed management: Focus on glyphosate. Pest Management Science, 67(9), 1037-1048. DOI: 10.1002 / ps.2195spa
dc.relation.referencesBenjwal, P., & Kar, K.K. (2015). One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity. Materials Chemistry and Physics, 160(1), 279-288. DOI: 10.1016/j.matchemphys.2015.04.038spa
dc.relation.referencesBerberidou, C., Kitsiou, V., Lambropoulou, D.A., Antoniadis, Α., Ntonou, E., Zalidis, G.C., & Poulios, I. (2017). Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. Journal of Environmental Management, 195(2), 133-139. DOI: 10.1016/j.jenvman.2016.06.010spa
dc.relation.referencesBouras, P., Stathatos, E., & Lianos, P. (2007). Preversos metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B: Environmental, 73(1-2), 51-59 DOI: 10.1016/j.apcatb.2006.06.007spa
dc.relation.referencesBraslavskym, S.E., (2007). Glossary of terms used in potochemistry 3rd edition. Pure and applied chemistry IUPAC, 79(3), 293-465.spa
dc.relation.referencesBurnham, B., & Zuckerman, J. (1970). Complex formation between porphyrins and metal ion. Journal of american chemical society, 95(6), 1547-1550. DOI: 10.1021/ja00709a019spa
dc.relation.referencesByrne, J.A., Fernandez, P.A., Dunlop, P.S.M., Alrousan, D.M.A., & Hamilton, J.W.J. (2011). Photocatalytic enhancement for solar desinfection of water: A Review. International Journal of Photoenergy, 2011(1), 1-12. DOI: 10.1155/2011/798051spa
dc.relation.referencesCalderbank, A., Charlton, D. Farrington, A. & James, R. (1972). Bipyridylium quaternary salts and related compounds. Part IV. Pyridones derived from paraquat and diquat. Journal of the chemical society, perkin transactions 1, 1972(1), 138-142. DOI: 10.1039 / P19720000138spa
dc.relation.referencesCamacho, W.R., Colmenares, J., García, M., & Acuña, S.P. (2016). Estimación del riesgo de contaminación de fuentes hídricas de pesticidas (Mancozeb y Carbofuran) en Ventaquemada, Boyacá - Colombia. Acta Agronomica, 65(4), 368-374. DOI: 10.15446/acag.v65n4.50325.spa
dc.relation.referencesCárdenas, O., Silva, E., Morales, L., & Ortiz, J. (2005). Estudio epidemiológico de exposición a plaguicidas organofosforados y carbamatos en siete departamentos colombianos. Biomédica, 25(2), 170-80. DOI: 10.7705/biomedica.v25i2.1339spa
dc.relation.referencesCarlson, J., Wisoczanski, A., Voightman. (2014). Limits of quantitation- yet another suggestion. Spectrochimica Acta part B: Atomic spectroscopy, 96(6), 69-73. DOI: 10.1016/j.sab.2014.03.012.spa
dc.relation.referencesCastells, X.E. (2012). Diccionario de Términos ambientales: Reciclaje de residuos industriales. (Ediciones Dias de Santos, Ed.). Madrid, España, p 567-569spa
dc.relation.referencesCastro, K., Figueira, F., Mendes, R., Cavaleiro, J., Neves, M., Simles, M., Almeida, F., Tomé, J., & Nakagaki, S. (2017) Copper–Porphyrin–Metal–Organic frameworks as oxidative heterogeneous catalysts. ChemCatChem Communications, 9(5), 2939-2945. DOI: 10.1002/cctc.201700484spa
dc.relation.referencesComninellis, C., Kapalka, A., Malato, S., Parsons, S., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology, 83(6), 769-776. DOI: 10.1002/jctb.1873spa
dc.relation.referencesCosta, J.M. (2005). Diccionario de Química Física. (Díaz de Santos S.A, Ed.) (1st ed.). Barcelona, España, p.420spa
dc.relation.referencesCoy, G., Bojaca, R., & Duque, M. (2006). Estandarización de métodos analíticos. En: Procedimientos para la estandarización de métodos analiticos. Instituto de hidrología meteorología y estudios ambientales-IDEAM. p. 3.spa
dc.relation.referencesCruz, M., Gomez, C., Duran-Valle, C.J., Pastrana-Martínez, L.M., Faria, J.L., Silva, A.M.T., & Bahamonde, A. (2017). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 416(1), 1013-1021. DOI: 10.1016/j.apsusc.2015.09.268spa
dc.relation.referencesChen, J., & Browne, W. (2018). Photochemistry of iron complexes. Coordination Chemistry Reviews, 374(21), 15-35. DOI: 10.1016/j.ccr.2018.06.008spa
dc.relation.referencesCheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical engineering journal, 284(1), 582-598. DOI: 10.1016/j.cej.2015.09.001spa
dc.relation.referencesCho, Y., Choi, W., Lee, C., Hyeon, T., & Lee, H. (2001). Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 35(5), 966-970. DOI: 10.1021/es001245espa
dc.relation.referencesDelsouz, M. R., Shafeeyan, M. S., Abdul, A. A., & Wan, W. M. A. (2017). Application of doped photocatalysts for organic pollutant degradation - A review. Journal of Environmental Management, 198(2), 78-94. DOI: 10.1016/j.jenvman.2017.04.099spa
dc.relation.referencesDemeestere, K., Dewulf, J., & Van, H. (2007). Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of art. Critical reviews in environmetal science and technology, (37)6, 489-538. DOI: 10.1080/10643380600966467spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística. (2016). Tercer censo nacional agropecuario: Hay campo para todos - Tomo 2. Departamento Administrativo Nacional de Estadística (DANE). Bogotá, Colombia, p.47-286.spa
dc.relation.referencesDewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M.A. (2017). New perspectives for Advanced Oxidation Processes. Journal of Environmental Management, 195(2), 93–99. DOI: 10.1016/j.jenvman.2017.04.010spa
dc.relation.referencesDomènech, X., Jardim, W., & Litter, M. (2001). Procesos avanzados de oxidación para la eliminación de contaminantes. In M. A. Blesa (Ed.), Eliminación de Contaminantes por Fotocatálisis Heterogénea (1st ed). La Plata, Argentina, p.3-26.spa
dc.relation.referencesDorough, G D., Miller, J R., & Huennekens, Frank. (1951). Spectra of the metallo-derivatives of α,β,y,δ- tetraphenylporphine. Journal of american chemical society, 73(9), 4315-4320. DOI: doi.org/10.1021/ja01153a085.spa
dc.relation.referencesDyke, B.R., Sanderson, D., & Noakes, D. (1970). Acute toxicity data for pesticides. World Review of Pest Control, 9(3), 119-127.spa
dc.relation.referencesEgerton, R. (2016). The scanning electron microscope. En: Physical principles of electron microscopy. Springer, Cham. p. 121-147spa
dc.relation.referencesEsplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water research, 36(6), 1034,1042. Doi: 10.1016/S0043-1354(01)00301-3spa
dc.relation.referencesFagadar, E., Vlascici, D., Tudose, R., & Costisor, O. (2007). UV-VIS and fluorescence spectra of meso-tetraphenylporphyrin and mesotetrakis-(4-methoxyphenyl) porphyrin in THF and THF-water systems. The influence of pH. En Revista de Chimie -Bucharest- Original Edition, 58(5), 451-455.spa
dc.relation.referencesFalvo, R., Mink, L., & Marsh, D. (1999). Microscale synthesis and 1H NMR analysis of tetraphenylporphyrins. Journal of chemical education, 76(2), 237-239. DOI: 10.1021/ed076p237.spa
dc.relation.referencesFeng, Y., Chen, S., Guo, W., Zhang, Y., & Liu, G. (2007). Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions. En: Journal of Electroanalytical Chemistry, 602(1),115-122. DOI: 10.1016/j.jelechem.2006.12.016spa
dc.relation.referencesFernandes, A., Morao, A., Magrinho, M., Lopes, A., & Gonçalves, I. (2004). Electrochemical degradation of C.I. Acid Orange 7. Dyes and Pigments, 61(3), 287-296. DOI: 10.1016/j.dyepig.2003.11.008spa
dc.relation.referencesFinlayson, B. J., Harrington, J. M., Fujimura, R., & G. Isaac. (1991). Toxicity of Colusa Basin Drain water to young mysids and striped bass. En: California Department of Fish and Game Environmental Services Division Administrative Report, Sacramento, California. p. 91-92.spa
dc.relation.referencesFlorêncio, H., Pires, E., Castro, A., Nunes, M., Borges, C., & Costa, F. (2004). Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates. Chemosphere, 55(2004), 345-355. DOI: 10.1016/j.chemosphere.2003.11.013spa
dc.relation.referencesFraume, N.J., Palomino, A.T., & Ramirez, M.A. (2006). Manual abecedario ecológico: la más completa guia de términos ambientales. (Editorial San Pablo, Ed.) (6th ed.). Bogotá, Colombia, p.95.spa
dc.relation.referencesGarcés, L.F., Mejía, E.A., & Santamaría, J.J. (2004). La fotocatálisis como alternativa para el tratamiento de aguas residuales. Revista Lasallista de Investigación, 1(1), 83-92.spa
dc.relation.referencesGaya, U., & Abdullah, A. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals progress and problems. Journal of photochemistry reviews, 9(1), 1-12. DOI: 10.1016/j.jphotochemrev.2007.12.003spa
dc.relation.referencesGil, E., Cabrera, M., & Jaramillo, S. A. (2003). Foto-oxidación del sistema cromo hexavalente-4-clorofenol. Universidad Eafit 39(0120–341X), 60-75.spa
dc.relation.referencesGil, E., Quintero, L., Rincon, M., & Rivera, D. (2006). Degradación de colorantes de aguas residuales empleando UV/TiO2/H2O2/Fe2+. Revista universidad Eafit, 42(146), 80-101.spa
dc.relation.referencesGiovannetti, R. (2012). The use of spectrophotometry UV-Vis for the study of porphyrins. En J. Uddin (Ed), Macro to nano spectroscopy. Rijeka, Croacia, p. 87-108.spa
dc.relation.referencesGmurek, M., Olak, M., & Ledakowicz, S. (2017). Photochemical deomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310(2), 437-456. DOI: 10.1016/j.cej.2016.05.014spa
dc.relation.referencesGobernación de Boyacá. (2016). Plan de Desarrollo Departamental de Boyacá 2016 - 2019. p.600-601.spa
dc.relation.referencesGoldstein, S., & Czapsky, G. (1984). Mannitol as an OH• scavenger in aqueous solutions and in biological systems. International journal of radiation biology and related studies in physics, chemistry and medicine, 46(6), 725-729. DOI: 10.1080/09553008414551961.spa
dc.relation.referencesGong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., & Dickey, E.C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of material research, 16(12) 3331-3334. DOI: 10.1557/JMR.2001.0457.spa
dc.relation.referencesGranados, G., Páez, E.A., Ortega, F.M., Ferronato, C., & Chovelon, J.M. (2009). Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Applied Catalysis B: Environmental, 89(3–4), 448–454. DOI: 10.1016/j.apcatb.2009.01.001spa
dc.relation.referencesGranados, G., Torres, E., Zambrano, M., Nieto, A., & Gómez, V. (2018). Formation of hydroxyl radicals by a Fe2O3 microcrystals and its role in photodegradation of 2,4- dinitrophenol and lipid peroxidation. Research on Chemical Intermediates, 44(5), 3407-3424. DOI: 10.1007/s11164-018-3315-2.spa
dc.relation.referencesGrant, F. (1959). Properties of rutile (titanium dioxide). Reviews of modern physics, 31(3), 646-674. DOI: 10.1103/RevModPhys.31.646.spa
dc.relation.referencesGupta, N., & Bardos, T. (1968). Synthetic porphyrins II: Preparation and spectra of some metal chelates of para-substituted-meso-Tetraphenylporphines. Journal of pharmaceutical sciences, 57(2), 300-304. DOI: 10.1002/jps.2600570211.spa
dc.relation.referencesGupta, V., & Ali, I. (2008). Removal of endosulfan and methoxychlor from water on carbon slurry. Environmental Science and Technology, 42(3), 766-770. DOI: 10.1021/es7025032spa
dc.relation.referencesHan, C., Shao, Q., Liu, M., Ge, S., Liu, Q., & Lei, J. (2016). 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin decorated TiO2 nanotube arrays: Composite photoelectrodes for visible photocurrent generation and simultaneous degradation of organic pollutant. Materials science in semiconductro processing, 56(1), 166-173. DOI: 10.1016/j.mssp.2016.08.015.spa
dc.relation.referencesHerrmann, J.M. (2005) Destrucción de contaminantes orgánicos por fotocatálisis Heterogénea. En Tecnologías solares para la desinfección y descontaminación del agua. Solar Safe Water, 147-164.spa
dc.relation.referencesHien, T.D., Scharmüller, A., Kattwinkel, M., Kühne, R., Schüürmann, G., & Schäfer, R.B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 145(1), 135-141. DOI: 10.1016/j.ecoenv.2017.07.027.spa
dc.relation.referencesHoyer, P. (1996). Formation of a titianium dioxide nanotube array. Langmuir, 12(6), 1411-1413. DOI: 10.1021/la9507803.spa
dc.relation.referencesHuang, C., Lv, Y., Zhou, Q., Kang, S., Li, X., & Mu, J. (2014). Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group. Ceramics International, 40(5), 7093-7098. DOI: 10.1016/j.ceramint.2013.12.042spa
dc.relation.referencesHuang, X., Nahanishi, K., & Berova, N. (2000). Porphyrins and Metalloporphyrins: Versatile Circular Dichroic Reporter Groups for Structural Studies. Chirality, 12(4), 237-255. DOI: 10.1002/(SICI)1520-636X(2000)12:4<237::AID-CHIR10>3.0.CO;2-6spa
dc.relation.referencesHung, H., & Lien, S. (2007). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and purification technology, 58(1), 179-191. DOI: 10.1016/j.seppur.2007.07.017.spa
dc.relation.referencesInstituto Colombiano Agropecuario (2017). Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2016. Bogotá, Colombia p.7-35.spa
dc.relation.referencesInstituto Colombiano Agropecuario (2018). Registros Nacionales PQUA. Bogotá, Colombia, p.1-118spa
dc.relation.referencesInternational Centre for Diffraction Data (2014). PDF-2 [base de datos]. Recuperado de http://www.icdd.com/index.php/pdf-2/spa
dc.relation.referencesKasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160-3163. DOI: 10.1021/la9713816spa
dc.relation.referencesKasuga, T., Hiramatsu, M., Hoso, A., Sekino, T., & Nihara, K. (1999). Titania Nanotubes Prepared by Chemical Processing. Advanced Materials, 11(15), 1307-1311. DOI: 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-Hspa
dc.relation.referencesKathiravan, A., & Renganathan, R. (2009). Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. Journal of colloid and interface science, 331(2), 401-407. DOI: 10.1016/j.jcis.2008.12.001.spa
dc.relation.referencesKatsumata, H., Matsuba, K., Kaneco, S., & Suzuki, T. (2005). Degradation of carbofuran in aqueous solution by Fe (III) aquacomplexes as effective photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 170(3), 239-245. DOI: 10.1016/j.jphotochem.2004.09.002spa
dc.relation.referencesKaur, T., Sraw, A., Pal, A., & Wanchoo, R. (2016). Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Solar Energy, 125(3), 65-76. DOI: 10.1016/j.solener.2015.12.001spa
dc.relation.referencesKenkel, J. (2002). Introduction to spectrochemical methods. En: Analytical chemistry for technicians (Third edition), New York, p. 194-195.spa
dc.relation.referencesKim, H., & Lee, K. (2013). Photocatalytic activity of TiO2 nanotubes doped with Ag nanoparticles. Journal of nanoscience and nanotechnology, 13(8), 5597-5600. DOI: 10.1166/jnn.2013.7035spa
dc.relation.referencesKlavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous sustems by advanced oxidation processes. Environment international, 35(2), 402-417. DOI: 10.1016/j.envint.2008.07.009spa
dc.relation.referencesKöck, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458-460(1), 466-476. DOI: 10.1016/j.scitotenv.2013.04.010spa
dc.relation.referencesKoppenol, W., & Butler, J. (1984). The radiation chemistry of Cytochrome c. Israel journal of chemistry, 24(1), 11-16. DOI: 10.1002/ijch.198400002.spa
dc.relation.referencesKumar G, R., & Chandra Ch, M. (2016). Advanced oxidation process–based nanomaterials for the remediation of recalcitrant pollutants. En Nanomaterials for Wastewater Remediation. Uttar Pradesh, India, p. 33-48, DOI: 10.1016/B978-0-12-804609-8.00003-0spa
dc.relation.referencesKumar, S., Kaushik, G., Dar, M. A., Nimesh, S., López, U.J., & Villareal, J.F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190-208. DOI: 10.1016/S1002-0160(18)60017-7spa
dc.relation.referencesKuo, W.S., Chiang, Y.H., & Lai, L.S. (2006). Degradation of carbofuran in water by solar photocatalysis in presence of photosensitizers. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 41(6), 937-948. DOI: 10.1080/03601230600806137spa
dc.relation.referencesLa Penna, M., Alvarez, M.G., Yslas, E.I., Rivarola, V., & Durantiti, E. (2001). Characterization of photodynamic effects of meso-tetrakis-(4-methoxyphenyl) porphyrin: biological consequences in a human carcinoma cell line. Dyes and Pigments, 49(2), 75-82. DOI: 10.1016/S0143-7208(01)00010-9spa
dc.relation.referencesLee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 114(19), 9385-9454. DOI: 10.1021/cr500061mspa
dc.relation.referencesLevine, A.D., & Asano, T. (2004). Peer reviewed: Recovering sustainable water from wastewater. Environmental Science & Technology, 38(1), 201A-208A. DOI: doi.org/10.1021/es040504nspa
dc.relation.referencesLevine, I. N. (2004). Cinética de reacción. In Fisicoquímica (quinta ed.). Madrid, España, p.719spa
dc.relation.referencesLi, J., Xu, J., Dai, W., Li, H., & Fan, K. (2009). Direct hydro-alcohol thermal sythesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Applied Catalysis B: Environmental, 85(3-4), 162-170. DOI: 10.1016/j.apcatb.2008.07.008spa
dc.relation.referencesLin, L., Hou, C., Zhang, X., Wang, Y., Chen, Y., & He, T. (2018). Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron (III) Chloride heterogeneous catalysts. Applied Catalysis B: Environmental, 221(2), 312-319. DOI: 10.1016/j.apcatb.2017.09.033spa
dc.relation.referencesLindsey, J., Schereiman, I., Hsu, H., Keaney, P., & Marguerettas, A. (1987). Journal of organic chemistry, 57(5), 827-836. DOI: 10.1021/jo00381a022spa
dc.relation.referencesLitter, M. (1999). Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114. DOI: 10.1016/S0926-3373(99)00069-7.spa
dc.relation.referencesLittle, T. (2015). Method validation essentials, limit of blank, limit of detection, and limit of quantitation. BioPharm International, 28(4), 48-51.spa
dc.relation.referencesLiu, N., Chen, X., Zhang, J., & Schwank, J. (2014). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis today, 225(4), 34-51. DOI: 10.1016/j.cattod.2013.10.090.spa
dc.relation.referencesLock, E., & Wilks, M. (2010). Paraquat. En Hayes’ Handbook of pesticide toxicology (third ed.). London, UK, 1771-1827. DOI: 10.1016/C2009-1-03818-0.spa
dc.relation.referencesLongo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.xspa
dc.relation.referencesLongo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.xspa
dc.relation.referencesLü, X., Qian, H., Mele, G., De Riccardis, A., Zhao, R., Chen, J., & Hu, N. (2017). Impact of different TiO2 samples and porphyrin substituents on the photocatalytic performance of TiO2 copper porphyrin composites. Catalysis Today, 281(1), 45-52. DOI: 10.1016/j.cattod.2016.04.027spa
dc.relation.referencesMa, T., Inoue, K., Noma, H., Yao, K., & Abe, E. (2002). Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivates. Journal of photochemistry and photobiology A: Chemistry, 152(1), 207-212. DOI: 10.1016/S1010-6030(02)00025-4spa
dc.relation.referencesMaddila, S., Lavanya, P., & Jonnalagadda, S. B. (2015). Degradation, mineralization of bromoxynil pesticide by heterogeneous photocatalytic ozonation. Journal of Industrial and Engineering Chemistry, 24(1), 333-341. DOI: 10.1016/j.jiec.2014.10.005spa
dc.relation.referencesMahalakshmi, M., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2007). Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials, 143(1-2), 240-245. DOI: 10.1016/j.jhazmat.2006.09.008spa
dc.relation.referencesMalato, S., & Blanco, J. (1997). Procesos fotocatalíticos para la destrucción de contaminantes orgánicos en el agua. In Instituto de Estudios Almerienses (Ed.), Recursos naturales y medio ambiente en el sureste peninsular. Almería, España, p.49-62.spa
dc.relation.referencesMalato, S., Blanco, J., Estrada, C. A., Bandala, E. R., & Peñuela, G. (2001). Degradación de plaguicidas. En Eliminación de contaminantes por fotocatálisis heterogénea (1st ed). Madrid, España, p.269-284.spa
dc.relation.referencesMalato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. DOI: 10.1016/j.cattod.2009.06.018spa
dc.relation.referencesMalato, S., Maldonado, M.I., Fernández, P., Oller, I., Polo, I., & Sánchez, R. (2016). Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 42(1), 15-23. DOI: 10.1016/j.mssp.2015.07.017spa
dc.relation.referencesManfroi, D.C., Cavalheiro, A.A., Perazolli, L.A., Varela, J.A., & Zaghete, M.A. (2014). Titanate nanotubes produced from microwave-assisted hydrothermal synthesis : Photocatalytic and structural properties. Ceramics International, 40(9), 14483-14491. DOI: 10.1016/j.ceramint.2014.07.007spa
dc.relation.referencesMargat, J., & Vallée, D. (2000). Mediterranean vision on water, population and the environment for the 21 st Century, En Drainage canals and rice fields. Egypt, p.1-66.spa
dc.relation.referencesMarinas A.A. (2007). Catálisis heterogénea y Química Verde. Anales de La Real Sociedad Española de Química, 103(1), 30-37.spa
dc.relation.referencesMatamoros, V., & Salvadó, V. (2013). Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. Journal of Environmental Management, 117(1), 96-102. DOI: 10.1016/j.jenvman.2012.12.021spa
dc.relation.referencesMele, G., Del Sole, R., Vasapollo, G., García, E., Palmisiano, L., & Schiavello, M. (2003). Photocatalytic degradation of 4-nitrophenol in aqueous suspensión by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. Journal of Catalysis, 217(2), 334-342. DOI: 10.1016/S0021-9517(03)00040-Xspa
dc.relation.referencesMenck, R., & Yonamine, M. (2007). Gas chromatographic-mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 853(1-2), 260-264. DOI: 10.1016/j.jchromb.2007.03.026spa
dc.relation.referencesMiarAlipour, S., Friedmann, D., Scott, J., & Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341(1), 404-423. DOI: 10.1016/j.jhazmat.2017.07.070spa
dc.relation.referencesMilgrom, L R. (1997). Where porphyrins come from. En: Oxford university press. The color of life: an introduction to the chemistry of porphyrins and related, New York, p. 6-10 ; 48-62.spa
dc.relation.referencesMinisterio de agricultura. (2016). Evaluaciones Agropecuarias Municipales. Boyacá, Colombia, p. 1-5.spa
dc.relation.referencesMinisterio de la Protección Social, & Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2017). Resolución Numero 2115, Minambiente. Bogotá, Colombia, p. 1-85.spa
dc.relation.referencesMoctezuma, E., Leyva, E., Monreal, E., Villegas, N., & Infante, D. (1999). Photocatalytic degradation of the herbicide “paraquat”. Chemosphere, 39(3)551-517. DOI: 10.1016/S0045-6535(98)00599-2spa
dc.relation.referencesMonroy C.O.M. (2009). Caracterización de las prácticas agrícolas asociadas con el uso y manejo de plaguicidas en cultivos de papa. caso vereda mata de mora, en el Páramo de Merchán, Saboya, Boyacá (Tesis de Maestría en Gestión Ambiental). Universidad Pontificia Javeriana. p.45-59spa
dc.relation.referencesMorales, C.A., & Rodríguez, N. (2004). El Clorpirifos: posible disruptor endocrino en bovinos de leche. Revista Colombiana de Ciencias Pecuarias, 17(3), 255-266.spa
dc.relation.referencesMoreira, F., Boaventura, R., Brillas, E., & Vilar, V. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewater. Applied Catalysis B: Environmental 202(1), 217-261. DOI: 10.1016/j.apcatb.2016.08.037spa
dc.relation.referencesMothilal, K.K., Johnson, J., Gandhidasan, R., & Murugesa, R., (2004). Photosensitization with anthraquinone derivates: optical and EPR spin trapping studies of photogeneration of reactive oxygen species. Journal of Photochemistry and Photobiology A: Chemistry, 162(1), 9-16. DOI: 10.1016/S1010-6030(03)00290-9spa
dc.relation.referencesNatividad, M., Ormad, M., Mosteo, R., & Ovelleiro, J. (2012). Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide. International Journal of Photoenergy, 2012(1), 1-12. DOI: 10.1155/2012/371714spa
dc.relation.referencesNATO Science for Peace and Security Series C: Environmental Security. (2011). Environmental Security in South-Eastern Europe: International Agreements and their Implementation. En Springer Science & Business Media. Vama, Bulgaria, 5, p.69-84.spa
dc.relation.referencesNiu, J., Yao, B., Chen, Y., Peng, C., Yu, X., Zhang, J., & Bai, G. (2013). Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni-porphyrins. Applied Surface Science, 271(1), 39-44. DOI: 10.1016/j.apsusc.2012.12.175spa
dc.relation.referencesOki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068-1072. DOI: 10.1126/science.1128845spa
dc.relation.referencesOrellana, G., Villén, L., & Jimenez, E. (2005). Desinfección mediante fotosensibilizadores: principios básicos. En: Solar Safe Water. Buenos Aires, Argentina, p. 243-247.spa
dc.relation.referencesPark, J.Y., Choi, K., Lee, J.H., Hwang, C.H., Choi, D.Y., & Lee, J.W. (2013). Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Materials Letters, 97(1), 64-66. DOI: 10.1016/j.matlet.2013.01.047spa
dc.relation.referencesPatarroyo, L.C., Reyes, Y.C., Toloza, E.P., Becerra, M.L., & Medina, O.J. (2013). Determinación de plaguicidas clorpirifos en cultivos de fresa, mora y tomate de los municipios de Arcabuco y Sutamarchán por técnicas analíticas. En VIII Encuentro Facultad de Ciencias. Tunja, Colombia, p.128-130.spa
dc.relation.referencesPeláez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., & Dionysiou, D.D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125(1), 331-349. DOI: 10.1016/j.apcatb.2012.05.036.spa
dc.relation.referencesPeñuela, G., & Barceló, D. (1997). Comparative degradation kinetics of chlorpyrifos in water by photocatalysis with FeCl3, TiO2 and photolysis using solid-phase disk extraction followed by gas chromatographic techniques. Toxicological & environmental chemistry, 62(1-4), 135-147. DOI: 10.1080/02772249709358503.spa
dc.relation.referencesPérez, C.C. (1996). Configuración del sensor. En Sensores Ópticos. Universidad de Valencia, Valencia, España, p.97-114.spa
dc.relation.referencesPérez, M.H., Peñuela, G., Maldonado, M.I., Malato, O., Fernández-Ibáñez, P., Oller, I., & Malato, S. (2006). Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 64(3), 272–281. DOI: 10.1016/j.apcatb.2005.11.013.spa
dc.relation.referencesPey, J. (2008). Aplicación de procesos de oxidación avanzada (Fotocatálisis solar) para el tratamiento y reutilización de efluentes textiles (Tesis Doctoral). Universidad Politécnica De Valencia, Valencia, España, p.15-61.spa
dc.relation.referencesPineda, L.L. (2017). Diagnóstico de la Planta de Tratamiento de Agua Residual (PTAR) de Tunja – Boyacá (Tesis de pregrado). Universidad Católica de Colombia. Bogotá, Colombia, p.22-26.spa
dc.relation.referencesPino, N., & Peñuela, G. (2011). Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. International Biodeterioration and Biodegradation, 65(6), 827-831. DOI: 10.1016/j.ibiod.2011.06.001.spa
dc.relation.referencesPortela, R.R. (2008). Eliminación fotocatalítica de H2S en aire mediante TiO2 soportado sobre sustratos transparentes en el UV-A (Tesis Doctoral). Universidad de Santiago de Compostela, Santiago de compostela, España, p.201.spa
dc.relation.referencesPortilla, Á., Pinilla, G.D., Caballero, A J., Gómez, E., Marín, L.R., Manrique, E.F., & Gamboa, N. (2014). Prevalencia de signos y síntomas asociados a la exposición directa a plaguicidas neurotóxicos en una población rural colombiana en 2013. Médicas UIS, 27(2), 41-49.spa
dc.relation.referencesQiang, Z., Liu, C., Dong, B., & Zhang, Y. (2010). Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere, 78(5), 517-526. DOI: 10.1016/j.chemosphere.2009.11.037.spa
dc.relation.referencesRay, A., & Ghosh, M. (2005). Aquatic toxicity of carbamates and organophosphates. Toxicology of organophosphate & carbamate compound, 2006(1), 657-672. DOI: 10.1016/B978-012088523-7/50046-6.spa
dc.relation.referencesRazali, M., Noor, A.F., Mohamed, A & Sreekantan., S. (2012). Morphological and structural studies of titanate an titania nanostructured materials obtained after heat tratments of hydrotermally produced layered titanate. Journal of nanomaterial, 2012(1), 1-10. DOI: 10.1155/2012/962073spa
dc.relation.referencesRestrepo, I., Sanchez, L.D., Galvis, A., Rojas, J., & Sanabria, I.J. (2007). Tecnologías alternativas para la desinfección de aguas. En Avances en investigación y desarrollo en agua y saneamiento para el cumplimiento de las metas del milenio. Valle, Colombia, p.370-379.spa
dc.relation.referencesRichardson, S.D. (2008). Environmental Mass Spectrometry: Ermerging Contaminants and Current Issues. Analytical Chemistry, 80(12), 4373-4402. DOI: 10.1021/ac800660d.spa
dc.relation.referencesRodríguez, A., Letón, P., Rosal, R., Dorado, M., Villar, S., & Sanz, J.(2016). Técnologías emergentes. Tratamientos avanzados de aguas residuales industriales, Madrid, España, p. 46- 48.spa
dc.relation.referencesRodríguez, D.L. (2011). Evaluación de la presencia de residuos de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá, Cundinamarca (Tesis Magister en ciencia químicas), Magdalena y Santander. Universidad Nacional de Colombia. Bogotá, Colombia, p.126-130.spa
dc.relation.referencesRothemund, P., & Menotti, A. (1941). Phorphyrin studies. IV. The synthesis of α,β,ϒ,δ-tetraphenylporphine. Journal of american chemical society, 63(1), 267-270. DOI: 10.1021/ja01846a065.spa
dc.relation.referencesSanches, S., Barreto, M., & Pereira, V. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water research, 44(2010), 1809-1818. DOI: 10.1016/j.watres.2009.12.001.spa
dc.relation.referencesSangpour, P., Hashemi, F., & Moshfegh, A. Z. (2010). Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study. Journal of Physical Chemistry C, 114(33), 13955-13961. DOI: 10.1021/jp910454rspa
dc.relation.referencesSantos, M.S.F., Alves, A., & Madeira, L.M. (2011). Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal, 175(1), 279-290. DOI: 10.1016/j.cej.2011.09.106.spa
dc.relation.referencesSantos., L. (2008). Compuestos orgánicos como fotocatalizadores solares para la eliminación de contaminantes en medios acuosos: aplicaciones y estudios fotofísicos (Tesis Doctoral). Universitat Politècnica de Valencia, Valencia, España, p.11-54.spa
dc.relation.referencesSattler, K.D. (2010). Handbook of Nanophysics: Nanomedicine and Nanorobotics CRC Press. London, New york, p. 10-1-10-4.spa
dc.relation.referencesSauer, T., Cesconeto, G., José, H., & Moreira R. (2002). Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, 149(1), 147-154. DOI: 10.1016/S1010-6030(02)00015-1spa
dc.relation.referencesSclafani, A., & Herrmann, J. (1996) Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. Journal of physical chemistry, 100(32), 13655-13661. DOI: 10.1021/jp9533584.spa
dc.relation.referencesScheid, S. (2009). Síntese e caracterização da Meso-tetrakis(4-metóxifenil)porfirina e derivados. (Tesis maestría en química aplicada). Universidade Estadual de Ponta Grossa, Brasil. p. 41-56.spa
dc.relation.referencesShi, J., Chen, G., Zeng, G., Chen, A., He, K., Huang, Z., Hu, L., Zeng, J., Wu, J., & Liu, W. (2018). Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance. Ceramics International, 44(7), 7473-7480. DOI: 10.1016/j.ceramint.2018.01.124.spa
dc.relation.referencesShifu, C., & Gengyu, C. (2005). Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2•SiO2/beads by sunlight. Solar Energy, 79(1), 1-9. DOI: 10.1016/j.solener.2004.10.006spa
dc.relation.referencesShriver, D., Atkins, P., & Langford, C. (2007). Estructura Molecular. In Química Inorgánica. Barcelona, España, p.91-92.spa
dc.relation.referencesShukla, O., & Kulshretha, A. (1998). Effect and Fate of Pesticides in Rats. En Pesticides, man and biosphere. p. 217–417.spa
dc.relation.referencesSilverstein, R., Morril, T., & Bassier, C. (1991). Ultraviolet Spectrometry. En Spectrometric identification of Orfanic Compounds (5th edition). New York. p. 240-274.spa
dc.relation.referencesSimonsen, M.E. (2014). Heterogeneous Photocatalysis. En Chemistry of Advanced Environmental Purification Processes of Water: Fundamentals and Applications (1st ed.). Amsterdam, p.135-170.spa
dc.relation.referencesSinclair, C.J., & Boxall, A.B.A. (2003). Assessing the ecotoxicity of pesticide transformation products. Environmental Science and Technology, 37(20), 4617-4625. DOI: 10.1021/es030038mspa
dc.relation.referencesSivagami, K., Vikraman, B., Krishna, R.R., & Swaminathan, T. (2016). Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor. Ecotoxicology and Environmental Safety, 134(2), 327-331. DOI: 10.1016/j.ecoenv.2015.08.015spa
dc.relation.referencesSoto, A.C.A., & López F.G.A. (2009). Degradación Fotocatalítica de la Fluoresceina (Trabajo de grado de pregrado). Universidad Tecnología de Pereira - Escuela de Tecnología Química, Pereira, Colombia, p.44 -45.spa
dc.relation.referencesSuárez, S., Carballa, M., Omil, F., & Lema, J.M. (2008). How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters. Reviews in Environmental Science and Biotechnology 7(2), 125-138. DOI: 10.1007/s11157-008-9130-2spa
dc.relation.referencesSun, B., Vorontsov, A., & Smirniotis, P. (2003). Role of platinum deposite on TiO2 in pheol photocatalytic oxidation. Langmuir, 19(8), 3151-3156. DOI: doi.org/10.1021/la0264670.spa
dc.relation.referencesSun, L., Li, J., Wangs, C., Li, S., Chen, H., & Lin, C. (2009). An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials and Solar Cells, 93(10), 1875-1880. DOI: 10.1016/j.solmat.2009.07.001spa
dc.relation.referencesSun, Y., Zhao, Q., Wang, G., & Yan, K. (2017). Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. Journal of alloys and compounds, 711(1), 514-520. DOI: 10.1016/j.jallcom.2017.03.007spa
dc.relation.referencesSun, Z., She, Y., Zhou, Y., Song, X., & Li, K. (2011). Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. Molecules, 16(4)2960-2970. DOI: 0.3390/molecules16042960.spa
dc.relation.referencesTestai, E., Buratti, F., & Di Consiglio, E. (2010). Chlorpyrifos. En Hayes’ Handbook of pesticide toxicology (Third Edit). Italy, p. 1505-1526.spa
dc.relation.referencesThind, P.S., Kumari, D., & John, S. (2018). TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: Optimization of process parameters using response surface methodology. Journal of Environmental Chemical Engineering, 6(3), 3602 – 3609. DOI: 10.1016/j.jece.2017.05.031.spa
dc.relation.referencesThomas, D., & Marell, A. (1959). Metal chelates of tetraphenylporphine and of some p-substituted derivates. Journal of american chemical society, 81(19) 5111-5119. DOI: 10.1021/ja01528a024.spa
dc.relation.referencesTobin, J.S. (1970). Carbofuran. A new carbamate insecticide. Journal of Occupational Medicine, 12(1), 16-19.spa
dc.relation.referencesUnited States Environmental Protection Agency (2006). Reregistration Eligibility Decision for Chlorpyrifos p.6-8, 43-45.spa
dc.relation.referencesUnited States Environmental Protection Agency. (1997). Reregistration Eligibility Decision (RED) Paraquat Dichloride. Washington D,C. p. 2-9, 71-77spa
dc.relation.referencesUnited States Environmental Protection Agency. (2007). Completion of the Tolerance Reassessment and Final Registration Eligibility Decisions for the N-methyl Carbamate Pesticides. p.3–5, 18-20.spa
dc.relation.referencesVallero, D. (2004). Glossary of environmental sciences and engineering terminology. En Environmental Contaminats: Assessment and Control (First Edition), Durham, USA, p. 695spa
dc.relation.referencesVela, N., Calín, M., Yáñez-Gascón, M. J., Garrido, I., Pérez-Lucas, G., Fenoll, J., & Navarro, S. (2018). Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 353(1), 271-278. DOI: 10.1016/j.jphotochem.2017.11.040spa
dc.relation.referencesWalter, M.G., Rudine, A.B., & Wamser, C.C. (2010). Porphyrins and phthalocyanines in solar photovoltaic cells. Journal of Porphyrins and Phthalocyanines, 14(9), 759-792. DOI: 10.1142/S1088424610002689spa
dc.relation.referencesWang, Q., Jin, R., Zhang, M., & Gao, S. (2017). Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. Journal of Alloys and Compounds, 690(1), 139-144. DOI: 10.1016/j.jallcom.2016.07.281.spa
dc.relation.referencesWei, M., Wan, J., Hu, Z., Peng, Z., Wang, B., & Wang, H. (2017). Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO2 nanotube photocatalyst. Applied Surface Science, 391(B), 267-274. DOI: 10.1016/j.apsusc.2016.05.161.spa
dc.relation.referencesWei, M., Wan, J., Hu, Z., Wang, B., & Peng, Z. (2015). Synthesis, electron transfer and photocatalytic activity of TiO2 nanotubes sensitized by meso-tetra(4-carboxyphenyl)porphyrin under visible-light irradiation. RSC Advances 5(72), 58184-58190. DOI: 10.1039/C5RA11526D.spa
dc.relation.referencesWilliams, D., & Carter, C. (1996) The transmission electron microscope. En: Transmission electron microscopy. Springer, Boston p. 5-14.spa
dc.relation.referencesWintgens, T., Salehi, F., Hochstrat, R., & Melin, T. (2008). Emerging contaminants and treatment options in water recycling for indirect potable use. Water Science and Technology, 57(1), 99-107. DOI: 10.2166/wst.2008.799.spa
dc.relation.referencesWintrobe, M., & Geer, J. P. (2009). Molecular genetic aspects of nonhodkin. En Wintrobe’s Clinical Hematology (Twelfth ed), Filadelfia, Pensilvania, p.90-207.spa
dc.relation.referencesWorld Health Organization. (2009). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. Germany. p.1-81spa
dc.relation.referencesWu, L., Qiu, Y., Xi, M., Li, X., & Cen, C., (2015). Fabrication of TiO2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity. New Journal of Chemestry, 39(6), 4766-4773. DOI: 10.1039/C5NJ00373C.spa
dc.relation.referencesYao, B., Peng, C., Zhang, W., Zhang Q., Niu, J., & Zhao, J. (2015). A novel Fe(III) porphyrin-conjugated TiO2 visible-light photocatalyst. Applied catalysis B: Environmental, 174-175(9), 77-84. DOI: 10.1016/j.apcatb.2015.02.030.spa
dc.relation.referencesYu, H., Wang, X., Sun, H., & Huo, M. (2010). Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. Journal of Hazardous Materials, 184(1-3), 753-758. DOI: 10.1016/j.jhazmat.2010.08.103.spa
dc.relation.referencesYuan, R., Zhou, B., Hua, D., & Shi, C. (2014). Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water. Environmental Science & Engineering, 9(5), 850-860. DOI: 10.1007/s11783-014-0737-y.spa
dc.relation.referencesZahedi, F., Behpour, M., Ghoreishi, S. M., & Khalilian, H. (2015). Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Solar Energy, 120(1), 287-295. DOI: 10.1016/j.solener.2015.07.010.spa
dc.relation.referencesZakavi, S., Hosini, S., & Mojarrad, A. (2017). New insights into the influence of weak and strong acids on the oxidative staability and photocatalytic activity of porphyrins. New Journal of Chemistry, 41(19), 11053-11059. DOI: 10.1039 / C7NJ02442H.spa
dc.relation.referencesZalat, O., Elsayed, M., Fayed, M., & Abd El Megid, M. (2014). Validation of UV spectrophotometric and HPLC methods for quantitave determination of chlorpyrifos. International Letters of Chemistry, Physics and Astronomy, 21(1), 58-63. DOI: 10.18052/www.scipress.com/ILCPA.21.58.spa
dc.relation.referencesZangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26(1), 1-36. DOI: 10.1016/j.jiec.2014.10.043.spa
dc.relation.referencesZhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Journal of Physical Chemistry Chemical Physics, 16(38), 20382-20386. DOI: 10.1039/c4cp02201gspa
dc.relation.referencesZhang, Q., Gao, L., & Guo, J. (2000). Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied catalysis B: Environmental, 26(1), 207-215. DOI: 10.1016/S0926-3373(00)00122-3.spa
dc.relation.referencesZhang, Z., Wang, C.C., Zakaria, R., & Ying, J. (1998). Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. Journal of physical chemistry, 102(52), 10871-10878. DOI: 10.1021/jp982948+.spa
dc.relation.referencesZhao, X., Liu, X., Yu, M., Wang, C., & Li, J. (2017). The highly efficient and stable Cu, Co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes and Pigments, 136(1), 648-656. DOI: 10.1016/j.dyepig.2016.09.025.spa
dc.relation.referencesZheng, W., Shan, N., Yu, L., & Wang, X. (2008). UV visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes and Pigments, 77(1), 153-157. DOI: 10.1016/j.dyepig.2007.04.007.spa
dc.relation.referencesZoltan, T., Rosales, M.C., & Yadarola, C. (2016). Reactive oxygen species quantification and their correlation with the photocatalytic activity of TiO2 (anatase and rutile) sensitized with asymmetric porphyrins. Journal of Environmental Chemical Engineering, 4(4), 3967-3980. DOI: 10.1016/j.jece.2016.09.008.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordChlorpyrifosspa
dc.subject.keywordCarbofuranspa
dc.subject.keywordParaquatspa
dc.subject.keywordFree porphyrinsspa
dc.subject.keywordMetallic porphyrins with iron (III)spa
dc.subject.keywordTitanium dioxide nanotubes (TNT)spa
dc.subject.keywordHeterogeneous photocatalysisspa
dc.subject.lembParaquatspa
dc.subject.lembPlaguicidasspa
dc.subject.lembFotocatálisisspa
dc.subject.lembPorfirinasspa
dc.subject.proposalClorpirifosspa
dc.subject.proposalParaquatspa
dc.subject.proposalCarbofuranospa
dc.subject.proposalPorfirinas libresspa
dc.subject.proposalPorfirinas metálicas con hierro (III)spa
dc.subject.proposalNanotubos de dióxido de titanio (TNT)spa
dc.subject.proposalFotocatálisis heterogéneaspa
dc.titleDegradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzadaspa
dc.typemaster thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2019AngélicaSuárez.pdf
Tamaño:
3.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2019AngélicaSuárez1.pdf
Tamaño:
139.83 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación de facultad
Thumbnail USTA
Nombre:
2019AngélicaSuárez2.pdf
Tamaño:
554.87 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de confidencialidad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: