Analysis of Studies on the Extraction of Materials from Biosolids Through Bibliometric Networks

dc.contributor.authorHernandez Ramirez, Hugo Emmanuel
dc.contributor.authorContreras Ortiz, Martha Susana
dc.contributor.authorMendoza Moreno, Juan Francisco
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2025-01-29T19:31:55Z
dc.date.available2025-01-29T19:31:55Z
dc.date.issued2025-01-28
dc.descriptionEste estudio presenta una revisión bibliográfica sobre la extracción de materiales a partir de biosólidos, utilizando herramientas bibliométricas para identificar los hallazgos más significativos en este campo. Se recopiló una base de datos de documentos de Scopus, y el análisis de datos se llevó a cabo utilizando VOSviewer, lo que permitió la visualización de clusters y mapas de densidad relacionados con la investigación científica sobre este tema. Posteriormente, la base de datos se cargó en ScientoPy para identificar los artículos clave dentro de cada cluster y analizar las interrelaciones entre estos clusters. El objetivo principal del estudio era evaluar los métodos desarrollados, las lagunas identificadas y las técnicas, así como analizar posibles trabajos futuros para la extracción de materiales a partir de biosólidos, con especial atención a la aplicación de técnicas de ingeniería en este ámbito.spa
dc.description.abstractThis study presents a literature review on the extraction of materials from biosolids, utilizing bibliometric tools to identify the most significant findings in this field. A database of documents was compiled from Scopus, and data analysis was conducted using VOSviewer, enabling the visualization of clusters and density maps related to scientific research on this topic. Subsequently, the database was uploaded to ScientoPy to identify key articles within each cluster and analyze the interrelations between these clusters. The main objective of the study was to evaluate the developed methods, identified gaps, and techniques, as well as to analyze potential future works for the extraction of materials from biosolids, with a particular focus on the application of engineering techniques in this area.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Informáticospa
dc.format.mimetypetext/htmlspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/59582
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería de Sistemasspa
dc.publisher.programIngeniería Informáticaspa
dc.relation.referencesHidrotec. (2023, 11 de enero). Aguas residuales: tipos y componentes. Recuperado el 19 de noviembre de 2024, de https://www.hidrotec.com/blog/tipos-de-aguas-residuales/spa
dc.relation.referencesGov.co. (2014). DECRETO 1287 DE 2014. Recuperado el 15 de agosto de 2024, de https://www.suin-juriscol.gov.co/viewDocument.asp?id=1259502spa
dc.relation.referencesCenters for Disease Control and Prevention (CDC). (2019, 24 de enero). Indicaciones para controlar los riesgos potenciales que corren los trabajadores expuestos a los biosólidos de clase B. Recuperado el 12 de agosto de 2024, de https://www.cdc.gov/spanish/niosh/docs/2002-149_sp/default.htmlspa
dc.relation.referencesAmazon. (s. f.). ¿Qué es el aprendizaje automático? Recuperado el 12 de agosto de 2024, de https://aws.amazon.com/es/what-is/machine-learning/spa
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799.spa
dc.relation.referencesCochranelibrary.com. (s. f.). About the Cochrane database of systematic reviews. Recuperado el 19 de noviembre de 2024, de https://www.cochranelibrary.com/es/cdsr/about-cdsrspa
dc.relation.referencesUsa.gov. (s. f.). Agencia para la Investigación y la Calidad del Cuidado de la Salud (AHRQ). Recuperado el 19 de noviembre de 2024, de https://www.usa.gov/es/agencias/agencia-para-la-investigacion-y-la-calidad-del-cuidado-de-la-saludspa
dc.relation.referencesScopus.com. (s. f.). Recuperado el 12 de agosto de 2024, de https://www.scopus.com/home.urispa
dc.relation.referencesVOSviewer. (s. f.). VOSviewer - Visualizing scientific landscapes. Recuperado el 12 de agosto de 2024, de https://www.vosviewer.com/spa
dc.relation.referencesWikipedia. (s. f.). Formato RIS. En Wikipedia, The Free Encyclopedia. Recuperado de https://es.wikipedia.org/w/index.php?title=Formato_RIS&oldid=159533907spa
dc.relation.referencesScientoPy. (s. f.). ScientoPy. Recuperado el 12 de agosto de 2024, de https://www.scientopy.com/en/spa
dc.relation.referencesArmstrong, D. L., Lozano, N., Rice, C. P., Ramirez, M., & Torrents, A. (2016). Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility. Journal of Environmental Management, 165, 88–95.spa
dc.relation.referencesAndrade, N. A., Lozano, N., McConnell, L. L., Torrents, A., Rice, C. P., & Ramirez, M. (2015). Long-term trends of PBDEs, triclosan, and triclocarban in biosolids from a wastewater treatment plant in the Mid-Atlantic region of the US. Journal of Hazardous Materials, 282, 68–74.spa
dc.relation.referencesArvaniti, O. S., Andersen, H. R., Thomaidis, N. S., & Stasinakis, A. S. (2014). Sorption of perfluorinated compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment. Chemosphere, 111, 405–411.spa
dc.relation.referencesBarbarossa, A., Corsolini, S., Massi, A., Simoes, C., Guerranti, C., & Focardi, S. (2013). Perfluoroalkyl substances in human milk: A first survey in Italy. Environment International, 51, 27–30.spa
dc.relation.referencesBenskin, J. P., De Silva, A. O., Martin, L. J., Arsenault, G., McCrindle, R., Lo, B., ... Kelly, B. (2012). Perfluoroalkyl acids in the Atlantic and Canadian arctic oceans. Environmental Science & Technology, 46(11), 5815–5823.spa
dc.relation.referencesBevacqua, C. E., Rice, C. P., Torrents, A., & Ramirez, M. (2011). Steroid hormones in biosolids and poultry litter: A comparison of potential environmental inputs. Science of the Total Environment, 409(11), 2120–2126.spa
dc.relation.referencesKošnář, Z., Mercl, F., Chane, A. D., Pierdonà, L., Míchal, P., & Tlustoš, P. (2021). Occurrence of synthetic polycyclic and nitro musk compounds in sewage sludge from municipal wastewater treatment plants. Science of the Total Environment, 801, Article 149777.spa
dc.relation.referencesAntweiler, R. C., & Taylor, H. E. (2008). Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. summary statistics. Environmental Science & Technology, 42(10), 3732–3738.spa
dc.relation.referencesArtola-Garicano, E., Borkent, I., Hermens, J. L. M., & Vaes, W. H. J. (2003). Removal of two polycyclic musks in sewage treatment plants: Freely dissolved and total concentrations. Environmental Science & Technology, 37(14), 3111–3116.spa
dc.relation.referencesBalci, E., Genisoglu, M., Sofuoglu, S. C., & Sofuoglu, A. (2020). Indoor air partitioning of synthetic musk compounds: Gas, particulate matter, house dust, and window film. Science of the Total Environment, 729, Article 138798.spa
dc.relation.referencesAhn, K. C., Zhao, B., Chen, J., Cherednichenko, G., Sanmarti, E., Denison, M. S., ... Lasley, B. (2008). In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: Receptor-based bioassay screens. Environmental Health Perspectives, 116(9), 1203–1210.spa
dc.relation.referencesBalmer, M. E., Poiger, T., Droz, C., Romanin, K., Bergqvist, P. A., Müller, M. D., & Buser, H. R. (2004). Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environmental Science & Technology, 38(2), 390–395.spa
dc.relation.referencesBinelli, A., Cogni, D., Parolini, M., Riva, C., & Provini, A. (2009). In vivo experiments for the evaluation of genotoxic and cytotoxic effects of triclosan in Zebra mussel hemocytes. Aquatic Toxicology, 91(3), 238–244.spa
dc.relation.referencesLozano, N., Rice, C. P., Ramirez, M., & Torrents, A. (2013). Fate of triclocarban, triclosan and methyltriclosan during wastewater and biosolids treatment processes. Water Research, 47(13), 4519–4527.spa
dc.relation.referencesOgunyoku, T. A., & Young, T. M. (2014). Removal of triclocarban and triclosan during municipal biosolid production. Water Environment Research, 86(3), 197–203.spa
dc.relation.referencesAdolfsson-Erici, M., Pettersson, M., Parkkonen, J., & Sturve, J. (2002). Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 46(9–10), 1485–1489.spa
dc.relation.referencesFederle, T. W., Kaiser, S. K., & Nuck, B. A. (2002). Fate and effects of triclosan in activated sludge. Environmental Toxicology and Chemistry, 21(7), 1330–1337.spa
dc.relation.referencesAbbaspour, A., & Golchin, A. (2011). Immobilization of heavy metals in a contaminated soil in Iran using di-ammonium phosphate, vermicompost and zeolite. Environmental Earth Sciences, 63(5), 935–943.spa
dc.relation.referencesAchiba, W. B., Soudani, A., Ghorbel, A., Hentati, O., Bouaziz, S., Jedidi, N., & Barhoumi, B. (2009). Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agriculture, Ecosystems & Environment, 130(3–4), 156–163.spa
dc.relation.referencesAchiba, W. B., Soudani, A., Loukil, H., Ammar, E., & Barhoumi, B. (2010). Accumulation and fractionation of trace metals in a Tunisian calcareous soil amended with farmyard manure and municipal solid waste compost. Journal of Hazardous Materials, 176(1–3), 99–108.spa
dc.relation.referencesAfyuni, M., Rezaeinejad, Y., & Schulin, R. (2006). Extractability and plant uptake of Cu, Zn, Pb and Cd from a sludge-amended haplargid in central Iran. Arid Land Research and Management, 20(1), 29–41.spa
dc.relation.referencesHamidpour, M., Khadivi, E., & Afyuni, M. (2016). Residual effects of biosolids and farm manure on speciation and plant uptake of heavy metals in a calcareous soil. Environmental Earth Sciences, 75(12), 1–10.spa
dc.relation.referencesBrännvall, E., Wolters, M., Sjöblom, R., & Kumpiene, J. (2015). Elements availability in soil fertilized with pelletized fly ash and biosolids. Journal of Environmental Management, 159, 27–36.spa
dc.relation.referencesAshraf, M., Ozturk, M., & Ahmad, M. S. A. (Eds.). (2010). Plant adaptation and phytoremediation. Dordrecht: Springer Netherlands.spa
dc.relation.referencesBrännvall, E., Nilsson, M., Sjöblom, R., Skoglund, N., & Kumpiene, J. (2014). Effect of residue combinations on plant uptake of nutrients and potentially toxic elements. Journal of Environmental Management, 132, 287–295.spa
dc.relation.referencesBrännvall, E., Zamora, C. B., Sjöblom, R., & Kumpiene, J. (2014). Effect of industrial residue combinations on availability of elements. Journal of Hazardous Materials, 276, 171–181.spa
dc.relation.referencesAlbero, B., Sánchez-Brunete, C., Miguel, E., Aznar, R., & Tadeo, J. L. (2014). Determination of selected pharmaceutical compounds in biosolids by supported liquid extraction and gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 1336, 52–58.spa
dc.relation.referencesSamaras, V. G., Thomaidis, N. S., Stasinakis, A. S., & Lekkas, T. D. (2011). An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 399(7), 2549–2561.spa
dc.relation.referencesGros, M., Petrović, M., Ginebreda, A., & Barceló, D. (2010). Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International, 36(1), 15–26.spa
dc.relation.referencesSaleh, A., Larsson, E., Yamini, Y., & Jönsson, J. Å. (2011). Hollow fiber liquid phase microextraction as a preconcentration and clean-up step after pressurized hot water extraction for the determination of non-steroidal anti-inflammatory drugs in sewage sludge. Journal of Chromatography A, 1218(10), 1331–1339.spa
dc.relation.referencesLee, H.-B., Lewina Svoboda, M., Peart, T. E., & Smyth, S. A. (s. f.). Optimization of a microwave-assisted extraction procedure for the determination of selected alkyl, aryl, and halogenated phenols in sewage sludge and biosolids. Recuperado el 12 de agosto de 2024, de https://iwaponline.com/wqrj/article/51/4/344/21644/spa
dc.relation.referencesRolsky, C., Kelkar, V., Driver, E., & Halden, R. U. (2020). Municipal sewage sludge as a source of microplastics in the environment. Current Opinion in Environmental Science & Health, 14, 16–22.spa
dc.relation.referencesCorradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420.spa
dc.relation.referencesMahapatra, S., De Silva, A., Sarker, R. C., Pap, S., Ahmed, N., & Soylak, M. (2024). Microplastics and nanoplastics in environment: Sampling, characterization and analytical methods. Groundwater for Sustainable Development, 26, 101267.spa
dc.relation.referencesVerma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016). Toxic pollutants from plastic waste – A review. Procedia Environmental Sciences, 35, 701–708.spa
dc.relation.referencesCarr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.spa
dc.relation.referencesSimon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 142, 1–9.spa
dc.relation.referencesMalvernpanalytical.com. (2024, 11 de marzo). Cromatografía líquida. Recuperado el 15 de agosto de 2024, de https://www.malvernpanalytical.com/es/products/technology/liquid-chromatographyspa
dc.relation.referencesCentro de Diagnóstico (Cedinta). (2018, 9 de abril). Espectometría de Masa en Tandem. Recuperado el 19 de noviembre de 2024, de https://cedinta.cl/espectometria-de-masa-en-tandem/spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.proposalBibliometricspa
dc.subject.proposalNetworksspa
dc.subject.proposalBiosolidsspa
dc.subject.proposalChemical Materialsspa
dc.subject.proposalClustersspa
dc.subject.proposalHeatmapspa
dc.subject.proposalOrganic Materialsspa
dc.subject.proposalWastewaterspa
dc.titleAnalysis of Studies on the Extraction of Materials from Biosolids Through Bibliometric Networksspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
Articulo terminado.pdf
Tamaño:
660.58 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2025_Derechos_autor.pdf
Tamaño:
434.87 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
Ingenieria de sistemas 160125.pdf
Tamaño:
184.19 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: