Clasificación Litológica en Afloramientos de Rocas Mediante Técnicas de Aprendizaje Automático Usando Imágenes Satelitales
dc.contributor.advisor | Tesón Del Hoyo, Eliseo | |
dc.contributor.advisor | Rubriche Cárdenas, Juan Carlos | |
dc.contributor.author | Rodríguez Arias, Elizabeth | |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001343533 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001457530 | spa |
dc.contributor.orcid | https://orcid.org/0000-0001-6812-2838 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2024-01-29T16:02:36Z | |
dc.date.available | 2024-01-29T16:02:36Z | |
dc.date.issued | 2024-01-29 | |
dc.description | de imágenes de satélite, supone un gran avance en el estudio de la superficie de la tierra; debido a la heterogeneidad de las estructuras rocosas y las dificultades asociadas a cambios abruptos de topografía, la clasificación convencional tiene un gran componente subjetivo, que en ocasiones puede afectar la precisión del proceso. El objetivo de usar aprendizaje de máquinas para hacer clasificación litología es generar una herramienta que asista el proceso de clasificación y así mejorar los aspectos que puedan limitar los resultados, como suelen ser, optimizar el tiempo de procesamiento, mejorar la precisión de la clasificación, procesar bases de datos más voluminosas (imágenes con mayor resolución espectral y espacial) y cubrir ´áreas de estudio más extensas. La metodología está desarrollada sobre la plataforma de análisis geoespacial con procesamiento en la nube Google Earth Engine (GEE) y está implementada en cuatro fases principales; la primera es generar variables adicionales para el modelo de clasificación supervisada, mediante técnicas estadísticas de transformación de imagen y mejora espectral, como el cálculo de ´índices espectrales geológicos y el análisis de componentes principales (PCA), así como incorporar información topográfica mediante la adición del modelo digital de terrero (DEM) y agregando datos de textura por medio de la matriz de coocurrencia de nivel de grises (GLMC), también se incorporan los resultados del algoritmo de clasificación no supervisada K-means como una variable predictora. La segunda fase consiste en entrenar los algoritmos de aprendizaje supervisado Ramdon Forest (RF), Support Vector Machine (SVM), Classification and Regression Trees (CART), Mini mum Distance (MD) y Naive Bayes (NB) teniendo en cuenta las variables generadas en la primera fase junto información de referencia de campo o Ground Thruth, para reproducir varios modelos de clasificación de los cuales, en la tercera fase, se elige el que produzca mejores métricas de desempeño, generando un modelo de clasificación confiable que en una ´ultima fase se reproduce sobre una zona de superficie con características y litología desconocidas, aportando así información de base para realizar cartografía geológica sin haber requerido presencia de personal in situ. | spa |
dc.description.abstract | The application of machine learning techniques to perform terrain characterization from satellite images represents a significant advance in the study of the Earth’s surface. Because of the heterogeneity of rock structures and the difficulties associated with abrupt chan ges in topography, conventional classification possesses a large subjective component, which sometimes can affect the accuracy of the process. The desired result of using machine lear ning techniques in Lithological classification is to generate a tool that besides assisting the classification process, also helps to improve the aspects that may limit the results, such as optimizing processing time, increasing classification accuracy, larger data processing (images with higher spectral and temporal resolution) and to cover larger study areas. The metho dology is developed on the geospatial analysis platform with cloud processing Google Earth Engine (GEE) and it is implemented in four main phases: the first one consists of generating additional variables for the supervised classification model using statistical techniques, image transformation, and spectral enhancement, including the calculation of geological spectral indices and Principal Component Analysis (PCA), as well as incorporating topographic in formation through addition of Digital Terrain Model (DEM), adding together texture data through the Gray Level Matrix Co-occurrence (GLMC), and finally incorporate an additional band of the k-means algorithm no supervised classification. The second phase incorporates algorithm training under the supervision of Random Forest (RF), Support Vector Machine (SVM), Classification and Regression CART and Minimum Distance MD, taking into ac count the variables generated in the first phase together with the field reference information or ground thruth to reproduce several classification models that in the third phase, whichever displays the best performance metrics, is chosen leading to a reliable classification model, then, in the last phase, it will be applied to a surface area with unknown characteristics and lithology providing support information to carry out geological cartography without having required presence of people on site | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Estadística Aplicada | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Rodríguez Arias, E. (2023). Clasificación Litológica en Afloramientos de Rocas Mediante Técnicas de Aprendizaje Automático Usando Imágenes Satelitales. [Trabajo de Maestría, Universidad Santo Tomás]. Repositorio Institucional. | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/53740 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Estadística | spa |
dc.publisher.program | Maestría Estadística Aplicada | spa |
dc.relation.references | Borra, S., Thanki, R., & Dey, N. (2019). Satellite Image Analysis: Clustering and Classifi cation. Springer Nature Singapore Pte Ltd. | spa |
dc.relation.references | Breiman, L. (2001). Random Forest [Tesis doctoral]. Tesis doctoral. | spa |
dc.relation.references | Breiman, L., Friedman, J., Olshen, R., & Stone, C. (2017). Classification And Regression Trees. Chapman Hall/CRC | spa |
dc.relation.references | Cao, R., Chen, J., Chen, Y., Zhu, X., & Chen, M. (2020). Thick cloud removal in Land sat images based on autoregression of Landsat time-series data. Remote Sensing of Enviroment, 249, 112001. | spa |
dc.relation.references | Cardile, F., Crowly, M., Saah, D., & Clinton, N. (Eds.). (2024). Cloud-Based Remote Sensing with Google Earth Engine. Fundamentals and Applications. Springer | spa |
dc.relation.references | Chan, B., & Bai, K. (2018). Multisensor Data Fusion and Machine Learning for Environ mental Remote Sensing. CRC Pre | spa |
dc.relation.references | Congalton, R., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data. CRC Press. | spa |
dc.relation.references | Cracknell, M., & Reading, A. (2013). Geological mapping using remote sensing data: A com parison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers and Geosciences, 63, 22, 23. | spa |
dc.relation.references | Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing Ltd. | spa |
dc.relation.references | Estornell, J., Mart´ı-Gavil´a, J., Sebati´a, M., & Mengual, J. (2013). Principal Component analysis applied to remote sensing. Modelling in science Education and Learningl, 6(2), No. 7. | spa |
dc.relation.references | Ge, Q., W.and Cheng, Tang, Y., Jing, L., & Gao, C. (2018). Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sensing, 10, 638 | spa |
dc.relation.references | Golblatt, R., You, W., Hanson, G., & Khandelwal, A. (2016). Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sensing, 8, 634-662. | spa |
dc.relation.references | Gupta, R. (2018). Remote Sensing Geology. Springer. | spa |
dc.relation.references | Haralick, R., Shanmugan, K., & Dinstain, I. (1973). Textural Features of Image Classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3 No.6, 610-621. | spa |
dc.relation.references | Hargitai, H. (Ed.). (2019). Planetary Cartography and GIS. Springer. | spa |
dc.relation.references | James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer. | spa |
dc.relation.references | Kamusoko, C. (2019). Remote Sensing (Image Classification in R). Springer. | spa |
dc.relation.references | Lavender, S., & A., L. (2023). Practical Handbook of Remote Sensing. CRC Press. | spa |
dc.relation.references | Mahood, A., Maxwell, B., Spiers, A., Koontz, M., Ilangakoon, N., Solvik, K., Quarderer, N., Mcglinchy, J., Scholl, V., St Denis, L., Nagy, C., Braswell, A., Rossi, M., Herwehe, L., Wasser, L., Cattau, M., Iglesias, V., Yao, F., Leyk, S., & Balch, J. (2023). Ten simple rules for working with high resolution remote sensing data. Peer Community Journal, 3, article e4. | spa |
dc.relation.references | Marghany, M. (Ed.). (2022). Remote sensing and image processing in mineralogy. CRC Press. | spa |
dc.relation.references | Moser, G., & Zerubia, J. (Eds.). (2018). Mathematical Models for Remote Sensing Image Processing. Springer. | spa |
dc.relation.references | NASA, J. (2020). NASADEM Merged DEM Global 1 arc second V001 [Data set]. NASA EOSDIS Land Processes DAAC. GEE | spa |
dc.relation.references | Ninomiya, Y. (2004). Lithologic mapping with multispectral ASTER TIR and SWIR data. The International Society for Optical Engineering, 5234, 180-190. | spa |
dc.relation.references | Pokhariya, H., Singh, D., & Prakash, R. (2023). Evaluation of different machine learning algo rithms for LULC classification in heterogeneous Landscape by using Remote sensing and GIS techniques. Engineering Research Express, DOI 10.1088/2631-8695/acfa64. | spa |
dc.relation.references | Prost, G. (2014). Remote Sensing for geoscientists, image analysis and integration). CRS Press. | spa |
dc.relation.references | Quir´os, E. (2009). Clasificaci´on de im´agenes multiespectrales ASTER mediante funciones adaptativas [Tesis doctoral]. Tesis doctoral | spa |
dc.relation.references | Richards, J. (2013). Remote Sensing Digital Image Analysis. Springer | spa |
dc.relation.references | Serbouti, I., Raji, M., Hakdaoui, M., El Kamel, F., Pradhan, B., Gite, S., Alamri, A., Maulud, K., & Dikshit, A. (2022). Improved Lithological Map of Large Complex Semi-arid Regions Using Spectral and Textural Datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers. Remote Sensing, 14, 5498. | spa |
dc.relation.references | Shirmard, H., Farahbakhsh, E., Muller, D., & Chandra, R. (2022). A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Enviroment, 268, 112750. | spa |
dc.relation.references | Tangestani, M., & Shayeganpour, S. (2020). Mapping a Lithologically complex terrain using Sentinel-2A data: a case study of Suriyan area, Southwestern Iran). International Journal of Remote Sensing, 41-9, 3558-3574. | spa |
dc.relation.references | Tes´on, E. (2009). Estructura y cronolog´ıa de la deformaci´on en el borde Sur del Alto Atlas de Marruecos a partir del registro tectono-sedimentario de la cuenta de ante pa´ıs de Ouarzazate [Tesis doctoral]. Tesis doctoral. | spa |
dc.relation.references | Thenkabail, P. (Ed.). (2016). Remotely sensed data characterization, Classification, and ac curacies. CRC Press | spa |
dc.relation.references | Tso, B., & Mather, P. (2009). Classification methods for remotely sensed data. CRC Press | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Remote Sensing | spa |
dc.subject.keyword | Machine Learning | spa |
dc.subject.keyword | Algorithm | spa |
dc.subject.keyword | Lithology | spa |
dc.subject.keyword | Spectral Resolution | spa |
dc.subject.keyword | Reflectance | spa |
dc.subject.lemb | Estadística Aplicada | spa |
dc.subject.lemb | Aprendizaje | spa |
dc.subject.lemb | Tierra-Superficie | spa |
dc.subject.proposal | Teledección | spa |
dc.subject.proposal | Litología | spa |
dc.subject.proposal | Banda Espectral | spa |
dc.subject.proposal | Reflectancia | spa |
dc.title | Clasificación Litológica en Afloramientos de Rocas Mediante Técnicas de Aprendizaje Automático Usando Imágenes Satelitales | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/masterThesis | |
dc.type.local | Tesis de maestría | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2024elizabethrodriguez.pdf
- Tamaño:
- 12.81 MB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- 2024cartafacultad.pdf
- Tamaño:
- 94.96 KB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- 2024cartadeautor.pdf
- Tamaño:
- 105.56 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: