Aerogeles de Nanocelulosa Bacteriana: Una Alternativa Ambiental para la Remoción de Metales Pesados en Matrices Acuosas
dc.contributor.advisor | Martínez Bonilla, Carlos Andrés | spa |
dc.contributor.advisor | Hernández Celi, Inés | spa |
dc.contributor.author | Peña Gonzalez, Paula Tatiana | spa |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2023-09-25T14:20:51Z | |
dc.date.available | 2023-09-25T14:20:51Z | |
dc.date.issued | 2023-09-23 | |
dc.description | La contaminación de cuerpos de agua por metales pesados es una cuestión crucial en la actualidad debido a sus efectos perjudiciales en la salud pública y en la disponibilidad de recursos. Estos contaminantes tienen un potencial tóxico que altera procesos bioquímicos y fisiológicos en organismos vivos, conduciendo a patologías. La eliminación efectiva de estos contaminantes es una prioridad, aunque las técnicas convencionales a menudo presentan limitaciones y efectos secundarios. Esto ha impulsado la investigación de métodos más eficientes y sostenibles, como el uso de aerogeles como materiales adsorbentes. Estos aerogeles poseen numerosos grupos funcionales, una amplia área superficial y porosidad, lo que facilita la captura de iones metálicos. En consideración, se ha diseñado un aerogel a partir de nanocelulosa bacteriana oxidada con TEMPO, presentando un grado de oxidación del 0,5 %, junto con puntos cuánticos de carbono funcionalizados con PEI que fueron sintetizados hidrotermalmente. Este material sostenible se ha desarrollado con el propósito de aplicarlo en la eliminación de metales pesados presentes en soluciones acuosas. Se llevaron a cabo análisis de las propiedades ópticas, composición, morfología, tamaño, composición superficial y estabilidad del material utilizando técnicas como UV-Vis, fluorescencia, IR, SEM, TEM y XPS. Estos estudios confirmaron la dispersión de los puntos cuánticos amino-funcionalizados en la superficie del aerogel. Los resultados de los ensayos de remoción de metales mostraron que el aerogel logró una remoción eficiente del 40 % de mercurio y el 32 % de plomo en solución, destacando la predominancia del modelo cinético de pseudo segundo orden y la isoterma de Langmuir. Estos hallazgos indican un proceso de quimiosorción que resulta en la formación de una monocapa uniforme sobre la superficie del adsorbente diseñado. | spa |
dc.description.abstract | Water sources are currently facing significant challenges due to heavy metal contamination, which impacts both public health and resource availability. These harmful substances are toxic and disrupt the normal functioning of living organisms, thereby leading to health issues. The effective removal of these contaminants is a top priority, although traditional methods often have limitations and unwanted effects. To address this, research has turned toward more efficient and sustainable approaches such as employing aerogels as adsorbents. These aerogels feature functional groups, a large surface area, and porosity, which aid in capturing metal ions. An aerogel was developed using TEMPO-oxidized bacterial nanocellulose with a 0.5% oxidation degree, combined with hydrothermally synthesized PEI-functionalized carbon quantum dots. This environmentally friendly material was created to remove heavy metals from aqueous solutions. Various techniques, including UV-Vis, fluorescence, IR, SEM, TEM, and XPS, were used to analyze the optical properties, composition, size, morphology, surface composition, and stability. These examinations confirmed the dispersion of the amino-functionalized quantum dots on the surface of the aerogel. The metal removal tests demonstrated the efficiency of the aerogel in eliminating 40% of mercury and 32% of lead from the solution. Notably, the pseudo-second-order kinetic model and Langmuir isotherm prevailed, suggesting a chemisorption process that formed a uniform monolayer on the adsorbent surface. This sheds light on the nature of the adsorption mechanism, with promising implications for efficient heavy-metal removal. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Peña Gonzalez, P. T. (2023) Aerogeles de Nanocelulosa Bacteriana: Una Alternativa Ambiental para la Remoción de Metales Pesados en Matrices Acuosas [Tesis de posgrado]. Universidad Santo Tomás, Bucaramanga, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/52370 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Química Ambiental | spa |
dc.publisher.program | Maestría Ciencias y Tecnologías Ambientales | spa |
dc.relation.references | Abdolmohammad, H., & Rahimpour, E. (2016). A novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricyanide chemiluminescence system for Hg(II) ion detection. Sensors and Actuators, B: Chemical, 225, 258–266. https://doi.org/10.1016/j.snb.2015.11.052 | spa |
dc.relation.references | Adly, M. S., El-Dafrawy, S. M., Ibrahim, A. A., El-Hakam, S. A., & El-Shall, M. S. (2021). Efficient removal of heavy metals from polluted water with high selectivity for Hg(ii) and Pb(ii) by a 2-imino-4-thiobiuret chemically modified MIL-125 metal-organic framework. RSC Advances, 11, 13940–13950. https://doi.org/10.1039/d1ra00927c | spa |
dc.relation.references | Ahmed, M., Mavukkandy, M. O., Giwa, A., Elektorowicz, M., Katsou, E., Khelifi, O., Naddeo, V., & Hasan, S. W. (2022). Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water, 5, 1–25. https://doi.org/10.1038/s41545-022-00154-5 | spa |
dc.relation.references | Alatalo, S. M., Pileidis, F., Mäkilä, E., Sevilla, M., Repo, E., Salonen, J., Sillanpää, M., & Titirici, M. M. (2015). Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. ACS Applied Materials and Interfaces, 7(46), 25875–25883. https://doi.org/10.1021/acsami.5b08287 | spa |
dc.relation.references | Awad, F. S., Abouzeid, K. M., El-Maaty, W. M. A., El-Wakil, A. M., & El-Shall, M. S. (2017). Efficient removal of heavy metals from polluted water with high selectivity for mercury(II) by 2-imino-4-thiobiuret-partially reduced graphene oxide (IT-PRGO). ACS Applied Materials and Interfaces, 9, 34230–34242. https://doi.org/10.1021/acsami.7b10021 | spa |
dc.relation.references | Bhattacharjee, T., Islam, M., Chowdhury, D., & Majumdar, G. (2021). In-situ generated carbon dot modified filter paper for heavy metals removal in water. Environmental Nanotechnology, Monitoring & Management, 16, 100582. https://doi.org/10.1016/j.enmm.2021.100582 | spa |
dc.relation.references | Boonmahitthisud, A., Soykeabkaew, N., Ongthip, L., & Tanpichai, S. (2022). Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydrate Polymers, 119192. https://doi.org/10.1016/j.carbpol.2022.119192 | spa |
dc.relation.references | Chen, C. Y., Tsai, Y. H., & Chang, C. W. (2019). Evaluation of the dialysis time required for carbon dots by HPLC and the properties of carbon dots after HPLC fractionation. New Journal of Chemistry, 43(16), 6153–6159. https://doi.org/10.1039/c9nj00434c | spa |
dc.relation.references | Da, X., Han, Z., Yang, Z., Zhang, D., Hong, R., Tao, C., Lin, H., & Huang, Y. (2022). Preparation of multicolor carbon dots with high fluorescence quantum yield and application in white LED. Chemical Physics Letters, 794, 139497. https://doi.org/10.1016/j.cplett.2022.139497 | spa |
dc.relation.references | de Carvalho, J., Pedroni, A., Rodríguez, D., Júnior, L., de Souza, L., Woiciechowski, A., & Soccol, C. (2013). Downstream Operation of Fermented Productos. In C. Soccol, A. Pandey, & C. Larroche (Eds.), Fermentation Processes Engineering in the Food Industry (pp. 201–236). CRC Press. | spa |
dc.relation.references | Geng, B., Xu, Z., Liang, P., Zhang, J., Christie, P., Liu, H., Wu, S., & Liu, X. (2021). Three-dimensional macroscopic aminosilylated nanocellulose aerogels as sustainable bio-adsorbents for the effective removal of heavy metal ions. International Journal of Biological Macromolecules, 190(August), 170–177. https://doi.org/10.1016/j.ijbiomac.2021.08.186 | spa |
dc.relation.references | Ghorbani, M., Tajik, H., Moradi, M., Molaei, R., & Alizadeh, A. (2022). One-pot microbial approach to synthesize carbon dots from baker ’ s yeast-derived compounds for the preparation of antimicrobial membrane. Journal of Environmental Chemical Engineering, 10, 107525. https://doi.org/10.1016/j.jece.2022.107525 | spa |
dc.relation.references | Guan, H., Cheng, Z., & Wang, X. (2018). Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents [Research-article]. ACS Nano, 12(10), 10365–10373. https://doi.org/10.1021/acsnano.8b05763 | spa |
dc.relation.references | Hinterberger, V., Damm, C., Haines, P., Guldi, D. M., & Peukert, W. (2019). Purification and structural elucidation of carbon dots by column chromatography. Nanoscale, 11(17), 8464–8474. https://doi.org/10.1039/c9nr01029g | spa |
dc.relation.references | Hitam, C. N. C., & Jalil, A. A. (2022). Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. Environmental Research, 204, 111964. https://doi.org/10.1016/j.envres.2021.111964 | spa |
dc.relation.references | Ho, Y. S., Huang, C. T., & Huang, H. W. (2002). Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 37(12), 1421–1430. https://doi.org/10.1016/S0032-9592(02)00036-5 | spa |
dc.relation.references | Huo, X., Shen, H., Liu, R., & Shao, J. (2021). Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging. ACS Omega, 6, 26499–26508. https://doi.org/10.1021/acsomega.1c03731 | spa |
dc.relation.references | Ihsanullah, I., Sajid, M., Khan, S., & Bilal, M. (2022). Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Separation and Purification Technology, 291(March), 120923. https://doi.org/10.1016/j.seppur.2022.120923 | spa |
dc.relation.references | Isogai, A., & Zhou, Y. (2019). Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Current Opinion in Solid State and Materials Science, 23(2), 101–106. https://doi.org/10.1016/j.cossms.2019.01.001 | spa |
dc.relation.references | Jacinth, K., Sheeba, S., Peter, T., Devanesan, S., Ahmed, M., & Murali, M. (2022). Chemosphere Valorisation of bio-derived fluorescent carbon dots for metal sensing , DNA binding and bioimaging. Chemosphere, 298, 134128. https://doi.org/10.1016/j.chemosphere.2022.134128 | spa |
dc.relation.references | Kenawy, I. M. M., Eldefrawy, M. M., Eltabey, R. M., & Zaki, E. G. (2019). Melamine grafted chitosan-montmorillonite nanocomposite for ferric ions adsorption: Central composite design optimization study. Journal of Cleaner Production, 241, 118189. https://doi.org/10.1016/j.jclepro.2019.118189 | spa |
dc.relation.references | Kumar, P., Dua, S., Kaur, R., Kumar, M., & Bhatt, G. (2022). A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 12, 4714–4759. https://doi.org/10.1039/d1ra08452f | spa |
dc.relation.references | Li, T., Shi, W., Shuang, E., Mao, Q., & Chen, X. (2021). Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications. Journal of Colloid and Interface Science, 591, 334–342. https://doi.org/10.1016/j.jcis.2021.02.024 | spa |
dc.relation.references | Lindmark, M., Cherukumilli, K., Crider, Y. S., Marcenac, P., Lozier, M., Voth-Gaeddert, L., Lantagne, D. S., Mihelcic, J. R., Zhang, Q. M., Just, C., & Pickering, A. J. (2022). Passive In-Line Chlorination for Drinking Water Disinfection: A Critical Review. Environmental Science and Technology, 56, 9164–9181. https://doi.org/10.1021/acs.est.1c08580 | spa |
dc.relation.references | Liu, L., & Xu, Z. (2019). Study of chromatographic fractions from carbon dots isolated by column chromatography and a binary gradient elution: Via RP-HPLC. Analytical Methods, 11, 760–766. https://doi.org/10.1039/c8ay02660b | spa |
dc.relation.references | Long, L. Y., Weng, Y. X., & Wang, Y. Z. (2018). Cellulose aerogels: Synthesis, applications, and prospects. Polymers, 10, 623. https://doi.org/10.3390/polym10060623 | spa |
dc.relation.references | Marakana, P. G., Dey, A., & Saini, B. (2021). Isolation of nanocellulose from lignocellulosic biomass: Synthesis, characterization, modification, and potential applications. Journal of Environmental Chemical Engineering, 9(6), 106606. https://doi.org/10.1016/j.jece.2021.106606 | spa |
dc.relation.references | Meierhofer, F., Dissinger, F., Weigert, F., Jungclaus, J., Müller-Caspary, K., Waldvogel, S. R., Resch-Genger, U., & Voss, T. (2020). Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. Journal of Physical Chemistry C, 124, 8894–8904. https://doi.org/10.1021/acs.jpcc.9b11732 | spa |
dc.relation.references | Mhd Haniffa, M. A. C., Ching, Y. C., Chuah, C. H., Yong Ching, K., Nazri, N., Abdullah, L. C., & Nai-Shang, L. (2017). Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose. Carbohydrate Polymers, 173, 91–99. https://doi.org/10.1016/j.carbpol.2017.05.084 | spa |
dc.relation.references | Mo, L., Pang, H., Lu, Y., Li, Z., Kang, H., Wang, M., Zhang, S., & Li, J. (2021). Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. Journal of Hazardous Materials, 415(March), 125612. https://doi.org/10.1016/j.jhazmat.2021.125612 | spa |
dc.relation.references | Mo, L., Tan, Y., Shen, Y., & Zhang, S. (2022). Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu (II). Chemosphere, 291, 132887. https://doi.org/10.1016/j.chemosphere.2021.132887 | spa |
dc.relation.references | Monier, M., Ayad, D. M., Wei, Y., & Sarhan, A. A. (2010). Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. Reactive and Functional Polymers, 70(4), 257–266. https://doi.org/10.1016/j.reactfunctpolym.2010.01.002 | spa |
dc.relation.references | OMS. (2022). Agua. https://www.who.int/es/news-room/fact-sheets/detail/drinking-water | spa |
dc.relation.references | ONU. (2020). El agua, un recurso que se agota por el crecimiento de la población y el cambio climático. Noticias ONU. https://news.un.org/es/story/2020/11/1484732 | spa |
dc.relation.references | Park, S. J., & Yang, H. K. (2022). Ultra-fast synthesis of carbon dots using the wasted coffee residues for environmental remediation. Current Applied Physics, 36, 9–15. https://doi.org/10.1016/j.cap.2022.01.001 | spa |
dc.relation.references | Perez, D., Montanari, S., & Vignon, M. (2003). TEMPO-mediated oxidation of cellulose III. Biomacromolecules, 4, 1417–1425. https://doi.org/10.1021/bm034144s | spa |
dc.relation.references | Pramudita, R., Marpongahtun, Gea, S., Daulay, A., Harahap, M., Tan, Y. Z., Goei, R., & Tok, A. I. Y. (2022). Synthesis of fluorescent citric acid carbon dots composites derived from empty fruit bunches of palm oil tree and its anti-bacterial property. Case Studies in Chemical and Environmental Engineering, 6(1), 100277. https://doi.org/10.1016/j.cscee.2022.100277 | spa |
dc.relation.references | Qiao, A., Cui, M., Huang, R., Ding, G., Qi, W., He, Z., Klemeš, J. J., & Su, R. (2021). Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 272(May). https://doi.org/10.1016/j.carbpol.2021.118471 | spa |
dc.relation.references | Razzaq, Z., Hamayun, M., Murtaza, S., Kausar, S., Altaf, A. A., Khan, R. U., & Javaid, T. (2022). Removal of As(V) and Cr(VI) with Low-Cost Novel Virgin and Iron-Impregnated Banana Peduncle-Activated Carbons. ACS Omega, 8, 2098–2111. https://doi.org/10.1021/acsomega.2c05957 | spa |
dc.relation.references | Repo, E., Warchol, J. K., Kurniawan, T. A., & Sillanpää, M. E. T. (2010). Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chemical Engineering Journal, 161(1–2), 73–82. https://doi.org/10.1016/j.cej.2010.04.030 | spa |
dc.relation.references | Revin, V. V., Nazarova, N. B., Tsareva, E. E., Liyaskina, E. V., Revin, V. D., & Pestov, N. A. (2020). Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Frontiers in Bioengineering and Biotechnology, 8(December), 1–19. https://doi.org/10.3389/fbioe.2020.603407 | spa |
dc.relation.references | Saleh, T. A. (2015). Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environmental Science and Pollution Research, 22(21), 16721–16731. https://doi.org/10.1007/s11356-015-4866-z | spa |
dc.relation.references | Schneider, J., Reckmeier, C. J., Xiong, Y., Von Seckendorff, M., Susha, A. S., Kasak, P., & Rogach, A. L. (2017). Molecular fluorescence in citric acid-based carbon dots. Journal of Physical Chemistry C, 121, 2014–2022. https://doi.org/10.1021/acs.jpcc.6b12519 | spa |
dc.relation.references | Sendão, R., Martínez, M. del V., Algarra, M., Esteves, J. C. G., & Pinto, L. (2020). Comparative life cycle assessment of bottom-up synthesis routes for carbon dots derived from citric acid and urea. Journal of Cleaner Production, 254, 1–10. https://doi.org/10.1016/j.jclepro.2020.120080 | spa |
dc.relation.references | Shahriari, M., Li, G., Liu, L., Sattar, M., Chen, L., Zhong, C., & Hong, F. F. (2022). A poly-L-lysine-bonded TEMPO-oxidized bacterial nanocellulose-based antibacterial dressing for infected wound treatment. Carbohydrate Polymers, 287(October 2021), 119266. https://doi.org/10.1016/j.carbpol.2022.119266 | spa |
dc.relation.references | Song, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, T. T., & Guo, M. (2020). Luminescent carbon quantum dots/nanofibrillated cellulose composite aerogel for monitoring adsorption of heavy metal ions in water. Optical Materials, 100, 109642. https://doi.org/10.1016/j.optmat.2019.109642 | spa |
dc.relation.references | Sousa, H. B. A., Martins, C. S. M., & Prior, J. A. V. (2021). You don’t learn that in school: An updated practical guide to carbon quantum dots. Nanomaterials, 11, 611. https://doi.org/10.3390/nano11030611 | spa |
dc.relation.references | Thanh Hop, T., Mai, D., Duc Cong, T., Y. Nhi, T., Duc Loi, V., Mai Huong, N., & Trinh Tung, N. (2022). A comprehensive study on preparation of nanocellulose from bleached wood pulps by TEMPO-mediated oxidation. Results in Chemistry, 4(September), 100540. https://doi.org/10.1016/j.rechem.2022.100540 | spa |
dc.relation.references | Thresia, R., Mary, R., Antony, T., Tharayil, A., Das, H., Kargarzadeh, H., Jose, C., & Thomas, S. (2022). A review on the best bioadsorbent membrane- nanocellulose for effective removal of pollutants from aqueous solutions. Carbohydrate Polymer Technologies and Applications, 3, 100209. https://doi.org/10.1016/j.carpta.2022.100209 | spa |
dc.relation.references | Tshikovhi, A., Mishra, S. B., & Mishra, A. K. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. International Journal of Biological Macromolecules, 152, 616–632. https://doi.org/10.1016/j.ijbiomac.2020.02.221 | spa |
dc.relation.references | Umar, E., Ikram, M., Haider, J., Nabgan, W., Haider, A., Imran, M., & Nazir, G. (2023). A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 35, e00529. https://doi.org/10.1016/j.susmat.2022.e00529 | spa |
dc.relation.references | UNESCO. (2021). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2021. In Organización de las Naciones Unidas. http://www.unwater.org/publications/world-water-development-report-2019/ | spa |
dc.relation.references | Varsha, P. T., Aswathi, B. S., & Renuka, N. K. (2022). Arrowroot derived carbon dots : Green synthesis and application as an efficient optical probe for fluoride ions. Materials Today: Proceedings, 51, 2417–2421. https://doi.org/10.1016/j.matpr.2021.11.602 | spa |
dc.relation.references | Visheratina, A., Hesami, L., Wilson, A., Baalbaki, N., Noginova, N., Noginov, M., & Kotov, N. (2022). Hydrothermal synthesis of chiral carbon dots. Chirality, 34(12), 1503–1514. https://doi.org/10.1002/chir.23509 | spa |
dc.relation.references | Wu, B., Zhu, G., Dufresne, A., & Lin, N. (2019). Fluorescent Aerogels Based on Chemical Crosslinking between Nanocellulose and Carbon Dots for Optical Sensor. ACS Applied Materials and Interfaces, 11(17), 16048–16058. https://doi.org/10.1021/acsami.9b02754 | spa |
dc.relation.references | Xu, Y., Xu, Y., Chen, H., Gao, M., Yue, X., & Ni, Y. (2022). Redispersion of dried plant nanocellulose: A review. Carbohydrate Polymers, 294(April), 119830. https://doi.org/10.1016/j.carbpol.2022.119830 | spa |
dc.relation.references | Yao, X., Wang, Y., Li, F., Dalluge, J. J., Orr, G., Hernandez, R., Cui, Q., & Haynes, C. L. (2022). Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid-urea carbon dots. Nanoscale, 14, 9516–9525. https://doi.org/10.1039/d2nr02361j | spa |
dc.relation.references | Zhang, M., Li, M., Xu, Q., Jiang, W., Hou, M., Guo, L., Wang, N., Zhao, Y., & Liu, L. (2022). Nanocellulose-based aerogels with devisable structure and tunable properties via ice-template induced self-assembly. Industrial Crops & Products, 179, 114701. https://doi.org/10.1016/j.indcrop.2022.114701 | spa |
dc.relation.references | Zhang, Q., Wang, R., Feng, B., Zhong, X., & Ostrikov, K. (Ken). (2021). Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 12, 6856. https://doi.org/10.1038/s41467-021-27071-4 | spa |
dc.relation.references | Zhao, M., Huang, Z., Wang, S., Zhang, L., & Zhou, Y. (2019). Design of L-Cysteine Functionalized UiO-66 MOFs for Selective Adsorption of Hg(II) in Aqueous Medium. ACS Applied Materials and Interfaces, 11(50), 46973–46983. https://doi.org/10.1021/acsami.9b17508 | spa |
dc.relation.references | Zieliński, B., Miądlicki, P., & Przepiórski, J. (2022). Development of activated carbon for removal of pesticides from water: case study. Scientific Reports, 12, 20869. https://doi.org/10.1038/s41598-022-25247-6 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.local | Magister en Ciencias y Tecnologías Ambientales | spa |
dc.subject.keyword | Aerogel | spa |
dc.subject.keyword | Nanomaterials | spa |
dc.subject.keyword | Pollution | spa |
dc.subject.keyword | Remediation | spa |
dc.subject.keyword | Removal | spa |
dc.subject.lemb | Metales pesados | spa |
dc.subject.lemb | Aerogeles | spa |
dc.subject.lemb | Procesos bioquímicos y fisiológicos | spa |
dc.subject.proposal | Aerogel | spa |
dc.subject.proposal | Contaminación | spa |
dc.subject.proposal | Nanomateriales | spa |
dc.subject.proposal | Remediación | spa |
dc.subject.proposal | Remoción | spa |
dc.title | Aerogeles de Nanocelulosa Bacteriana: Una Alternativa Ambiental para la Remoción de Metales Pesados en Matrices Acuosas | spa |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/masterThesis | |
dc.type.local | Tesis de maestría | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 4 de 4

- Nombre:
- 2023PaulaPeña.pdf
- Tamaño:
- 2.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2023PaulaPeña1.pdf
- Tamaño:
- 360.64 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Aprobación Facultad

- Nombre:
- 2023PaulaPeña2.pdf
- Tamaño:
- 205.11 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Acuerdo de publicación

- Nombre:
- 2023PaulaPeña3.pdf
- Tamaño:
- 3.61 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Apéndices
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: