Aerogeles de Nanocelulosa Bacteriana: Una Alternativa Ambiental para la Remoción de Metales Pesados en Matrices Acuosas

dc.contributor.advisorMartínez Bonilla, Carlos Andrésspa
dc.contributor.advisorHernández Celi, Inésspa
dc.contributor.authorPeña Gonzalez, Paula Tatianaspa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2023-09-25T14:20:51Z
dc.date.available2023-09-25T14:20:51Z
dc.date.issued2023-09-23
dc.descriptionLa contaminación de cuerpos de agua por metales pesados es una cuestión crucial en la actualidad debido a sus efectos perjudiciales en la salud pública y en la disponibilidad de recursos. Estos contaminantes tienen un potencial tóxico que altera procesos bioquímicos y fisiológicos en organismos vivos, conduciendo a patologías. La eliminación efectiva de estos contaminantes es una prioridad, aunque las técnicas convencionales a menudo presentan limitaciones y efectos secundarios. Esto ha impulsado la investigación de métodos más eficientes y sostenibles, como el uso de aerogeles como materiales adsorbentes. Estos aerogeles poseen numerosos grupos funcionales, una amplia área superficial y porosidad, lo que facilita la captura de iones metálicos. En consideración, se ha diseñado un aerogel a partir de nanocelulosa bacteriana oxidada con TEMPO, presentando un grado de oxidación del 0,5 %, junto con puntos cuánticos de carbono funcionalizados con PEI que fueron sintetizados hidrotermalmente. Este material sostenible se ha desarrollado con el propósito de aplicarlo en la eliminación de metales pesados presentes en soluciones acuosas. Se llevaron a cabo análisis de las propiedades ópticas, composición, morfología, tamaño, composición superficial y estabilidad del material utilizando técnicas como UV-Vis, fluorescencia, IR, SEM, TEM y XPS. Estos estudios confirmaron la dispersión de los puntos cuánticos amino-funcionalizados en la superficie del aerogel. Los resultados de los ensayos de remoción de metales mostraron que el aerogel logró una remoción eficiente del 40 % de mercurio y el 32 % de plomo en solución, destacando la predominancia del modelo cinético de pseudo segundo orden y la isoterma de Langmuir. Estos hallazgos indican un proceso de quimiosorción que resulta en la formación de una monocapa uniforme sobre la superficie del adsorbente diseñado.spa
dc.description.abstractWater sources are currently facing significant challenges due to heavy metal contamination, which impacts both public health and resource availability. These harmful substances are toxic and disrupt the normal functioning of living organisms, thereby leading to health issues. The effective removal of these contaminants is a top priority, although traditional methods often have limitations and unwanted effects. To address this, research has turned toward more efficient and sustainable approaches such as employing aerogels as adsorbents. These aerogels feature functional groups, a large surface area, and porosity, which aid in capturing metal ions. An aerogel was developed using TEMPO-oxidized bacterial nanocellulose with a 0.5% oxidation degree, combined with hydrothermally synthesized PEI-functionalized carbon quantum dots. This environmentally friendly material was created to remove heavy metals from aqueous solutions. Various techniques, including UV-Vis, fluorescence, IR, SEM, TEM, and XPS, were used to analyze the optical properties, composition, size, morphology, surface composition, and stability. These examinations confirmed the dispersion of the amino-functionalized quantum dots on the surface of the aerogel. The metal removal tests demonstrated the efficiency of the aerogel in eliminating 40% of mercury and 32% of lead from the solution. Notably, the pseudo-second-order kinetic model and Langmuir isotherm prevailed, suggesting a chemisorption process that formed a uniform monolayer on the adsorbent surface. This sheds light on the nature of the adsorption mechanism, with promising implications for efficient heavy-metal removal.spa
dc.description.degreelevelMaestríaspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPeña Gonzalez, P. T. (2023) Aerogeles de Nanocelulosa Bacteriana: Una Alternativa Ambiental para la Remoción de Metales Pesados en Matrices Acuosas [Tesis de posgrado]. Universidad Santo Tomás, Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/52370
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programMaestría Ciencias y Tecnologías Ambientalesspa
dc.relation.referencesAbdolmohammad, H., & Rahimpour, E. (2016). A novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricyanide chemiluminescence system for Hg(II) ion detection. Sensors and Actuators, B: Chemical, 225, 258–266. https://doi.org/10.1016/j.snb.2015.11.052spa
dc.relation.referencesAdly, M. S., El-Dafrawy, S. M., Ibrahim, A. A., El-Hakam, S. A., & El-Shall, M. S. (2021). Efficient removal of heavy metals from polluted water with high selectivity for Hg(ii) and Pb(ii) by a 2-imino-4-thiobiuret chemically modified MIL-125 metal-organic framework. RSC Advances, 11, 13940–13950. https://doi.org/10.1039/d1ra00927cspa
dc.relation.referencesAhmed, M., Mavukkandy, M. O., Giwa, A., Elektorowicz, M., Katsou, E., Khelifi, O., Naddeo, V., & Hasan, S. W. (2022). Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water, 5, 1–25. https://doi.org/10.1038/s41545-022-00154-5spa
dc.relation.referencesAlatalo, S. M., Pileidis, F., Mäkilä, E., Sevilla, M., Repo, E., Salonen, J., Sillanpää, M., & Titirici, M. M. (2015). Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. ACS Applied Materials and Interfaces, 7(46), 25875–25883. https://doi.org/10.1021/acsami.5b08287spa
dc.relation.referencesAwad, F. S., Abouzeid, K. M., El-Maaty, W. M. A., El-Wakil, A. M., & El-Shall, M. S. (2017). Efficient removal of heavy metals from polluted water with high selectivity for mercury(II) by 2-imino-4-thiobiuret-partially reduced graphene oxide (IT-PRGO). ACS Applied Materials and Interfaces, 9, 34230–34242. https://doi.org/10.1021/acsami.7b10021spa
dc.relation.referencesBhattacharjee, T., Islam, M., Chowdhury, D., & Majumdar, G. (2021). In-situ generated carbon dot modified filter paper for heavy metals removal in water. Environmental Nanotechnology, Monitoring & Management, 16, 100582. https://doi.org/10.1016/j.enmm.2021.100582spa
dc.relation.referencesBoonmahitthisud, A., Soykeabkaew, N., Ongthip, L., & Tanpichai, S. (2022). Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydrate Polymers, 119192. https://doi.org/10.1016/j.carbpol.2022.119192spa
dc.relation.referencesChen, C. Y., Tsai, Y. H., & Chang, C. W. (2019). Evaluation of the dialysis time required for carbon dots by HPLC and the properties of carbon dots after HPLC fractionation. New Journal of Chemistry, 43(16), 6153–6159. https://doi.org/10.1039/c9nj00434cspa
dc.relation.referencesDa, X., Han, Z., Yang, Z., Zhang, D., Hong, R., Tao, C., Lin, H., & Huang, Y. (2022). Preparation of multicolor carbon dots with high fluorescence quantum yield and application in white LED. Chemical Physics Letters, 794, 139497. https://doi.org/10.1016/j.cplett.2022.139497spa
dc.relation.referencesde Carvalho, J., Pedroni, A., Rodríguez, D., Júnior, L., de Souza, L., Woiciechowski, A., & Soccol, C. (2013). Downstream Operation of Fermented Productos. In C. Soccol, A. Pandey, & C. Larroche (Eds.), Fermentation Processes Engineering in the Food Industry (pp. 201–236). CRC Press.spa
dc.relation.referencesGeng, B., Xu, Z., Liang, P., Zhang, J., Christie, P., Liu, H., Wu, S., & Liu, X. (2021). Three-dimensional macroscopic aminosilylated nanocellulose aerogels as sustainable bio-adsorbents for the effective removal of heavy metal ions. International Journal of Biological Macromolecules, 190(August), 170–177. https://doi.org/10.1016/j.ijbiomac.2021.08.186spa
dc.relation.referencesGhorbani, M., Tajik, H., Moradi, M., Molaei, R., & Alizadeh, A. (2022). One-pot microbial approach to synthesize carbon dots from baker ’ s yeast-derived compounds for the preparation of antimicrobial membrane. Journal of Environmental Chemical Engineering, 10, 107525. https://doi.org/10.1016/j.jece.2022.107525spa
dc.relation.referencesGuan, H., Cheng, Z., & Wang, X. (2018). Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents [Research-article]. ACS Nano, 12(10), 10365–10373. https://doi.org/10.1021/acsnano.8b05763spa
dc.relation.referencesHinterberger, V., Damm, C., Haines, P., Guldi, D. M., & Peukert, W. (2019). Purification and structural elucidation of carbon dots by column chromatography. Nanoscale, 11(17), 8464–8474. https://doi.org/10.1039/c9nr01029gspa
dc.relation.referencesHitam, C. N. C., & Jalil, A. A. (2022). Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. Environmental Research, 204, 111964. https://doi.org/10.1016/j.envres.2021.111964spa
dc.relation.referencesHo, Y. S., Huang, C. T., & Huang, H. W. (2002). Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 37(12), 1421–1430. https://doi.org/10.1016/S0032-9592(02)00036-5spa
dc.relation.referencesHuo, X., Shen, H., Liu, R., & Shao, J. (2021). Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging. ACS Omega, 6, 26499–26508. https://doi.org/10.1021/acsomega.1c03731spa
dc.relation.referencesIhsanullah, I., Sajid, M., Khan, S., & Bilal, M. (2022). Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Separation and Purification Technology, 291(March), 120923. https://doi.org/10.1016/j.seppur.2022.120923spa
dc.relation.referencesIsogai, A., & Zhou, Y. (2019). Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Current Opinion in Solid State and Materials Science, 23(2), 101–106. https://doi.org/10.1016/j.cossms.2019.01.001spa
dc.relation.referencesJacinth, K., Sheeba, S., Peter, T., Devanesan, S., Ahmed, M., & Murali, M. (2022). Chemosphere Valorisation of bio-derived fluorescent carbon dots for metal sensing , DNA binding and bioimaging. Chemosphere, 298, 134128. https://doi.org/10.1016/j.chemosphere.2022.134128spa
dc.relation.referencesKenawy, I. M. M., Eldefrawy, M. M., Eltabey, R. M., & Zaki, E. G. (2019). Melamine grafted chitosan-montmorillonite nanocomposite for ferric ions adsorption: Central composite design optimization study. Journal of Cleaner Production, 241, 118189. https://doi.org/10.1016/j.jclepro.2019.118189spa
dc.relation.referencesKumar, P., Dua, S., Kaur, R., Kumar, M., & Bhatt, G. (2022). A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 12, 4714–4759. https://doi.org/10.1039/d1ra08452fspa
dc.relation.referencesLi, T., Shi, W., Shuang, E., Mao, Q., & Chen, X. (2021). Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications. Journal of Colloid and Interface Science, 591, 334–342. https://doi.org/10.1016/j.jcis.2021.02.024spa
dc.relation.referencesLindmark, M., Cherukumilli, K., Crider, Y. S., Marcenac, P., Lozier, M., Voth-Gaeddert, L., Lantagne, D. S., Mihelcic, J. R., Zhang, Q. M., Just, C., & Pickering, A. J. (2022). Passive In-Line Chlorination for Drinking Water Disinfection: A Critical Review. Environmental Science and Technology, 56, 9164–9181. https://doi.org/10.1021/acs.est.1c08580spa
dc.relation.referencesLiu, L., & Xu, Z. (2019). Study of chromatographic fractions from carbon dots isolated by column chromatography and a binary gradient elution: Via RP-HPLC. Analytical Methods, 11, 760–766. https://doi.org/10.1039/c8ay02660bspa
dc.relation.referencesLong, L. Y., Weng, Y. X., & Wang, Y. Z. (2018). Cellulose aerogels: Synthesis, applications, and prospects. Polymers, 10, 623. https://doi.org/10.3390/polym10060623spa
dc.relation.referencesMarakana, P. G., Dey, A., & Saini, B. (2021). Isolation of nanocellulose from lignocellulosic biomass: Synthesis, characterization, modification, and potential applications. Journal of Environmental Chemical Engineering, 9(6), 106606. https://doi.org/10.1016/j.jece.2021.106606spa
dc.relation.referencesMeierhofer, F., Dissinger, F., Weigert, F., Jungclaus, J., Müller-Caspary, K., Waldvogel, S. R., Resch-Genger, U., & Voss, T. (2020). Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. Journal of Physical Chemistry C, 124, 8894–8904. https://doi.org/10.1021/acs.jpcc.9b11732spa
dc.relation.referencesMhd Haniffa, M. A. C., Ching, Y. C., Chuah, C. H., Yong Ching, K., Nazri, N., Abdullah, L. C., & Nai-Shang, L. (2017). Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose. Carbohydrate Polymers, 173, 91–99. https://doi.org/10.1016/j.carbpol.2017.05.084spa
dc.relation.referencesMo, L., Pang, H., Lu, Y., Li, Z., Kang, H., Wang, M., Zhang, S., & Li, J. (2021). Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. Journal of Hazardous Materials, 415(March), 125612. https://doi.org/10.1016/j.jhazmat.2021.125612spa
dc.relation.referencesMo, L., Tan, Y., Shen, Y., & Zhang, S. (2022). Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu (II). Chemosphere, 291, 132887. https://doi.org/10.1016/j.chemosphere.2021.132887spa
dc.relation.referencesMonier, M., Ayad, D. M., Wei, Y., & Sarhan, A. A. (2010). Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. Reactive and Functional Polymers, 70(4), 257–266. https://doi.org/10.1016/j.reactfunctpolym.2010.01.002spa
dc.relation.referencesOMS. (2022). Agua. https://www.who.int/es/news-room/fact-sheets/detail/drinking-waterspa
dc.relation.referencesONU. (2020). El agua, un recurso que se agota por el crecimiento de la población y el cambio climático. Noticias ONU. https://news.un.org/es/story/2020/11/1484732spa
dc.relation.referencesPark, S. J., & Yang, H. K. (2022). Ultra-fast synthesis of carbon dots using the wasted coffee residues for environmental remediation. Current Applied Physics, 36, 9–15. https://doi.org/10.1016/j.cap.2022.01.001spa
dc.relation.referencesPerez, D., Montanari, S., & Vignon, M. (2003). TEMPO-mediated oxidation of cellulose III. Biomacromolecules, 4, 1417–1425. https://doi.org/10.1021/bm034144sspa
dc.relation.referencesPramudita, R., Marpongahtun, Gea, S., Daulay, A., Harahap, M., Tan, Y. Z., Goei, R., & Tok, A. I. Y. (2022). Synthesis of fluorescent citric acid carbon dots composites derived from empty fruit bunches of palm oil tree and its anti-bacterial property. Case Studies in Chemical and Environmental Engineering, 6(1), 100277. https://doi.org/10.1016/j.cscee.2022.100277spa
dc.relation.referencesQiao, A., Cui, M., Huang, R., Ding, G., Qi, W., He, Z., Klemeš, J. J., & Su, R. (2021). Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 272(May). https://doi.org/10.1016/j.carbpol.2021.118471spa
dc.relation.referencesRazzaq, Z., Hamayun, M., Murtaza, S., Kausar, S., Altaf, A. A., Khan, R. U., & Javaid, T. (2022). Removal of As(V) and Cr(VI) with Low-Cost Novel Virgin and Iron-Impregnated Banana Peduncle-Activated Carbons. ACS Omega, 8, 2098–2111. https://doi.org/10.1021/acsomega.2c05957spa
dc.relation.referencesRepo, E., Warchol, J. K., Kurniawan, T. A., & Sillanpää, M. E. T. (2010). Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chemical Engineering Journal, 161(1–2), 73–82. https://doi.org/10.1016/j.cej.2010.04.030spa
dc.relation.referencesRevin, V. V., Nazarova, N. B., Tsareva, E. E., Liyaskina, E. V., Revin, V. D., & Pestov, N. A. (2020). Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Frontiers in Bioengineering and Biotechnology, 8(December), 1–19. https://doi.org/10.3389/fbioe.2020.603407spa
dc.relation.referencesSaleh, T. A. (2015). Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environmental Science and Pollution Research, 22(21), 16721–16731. https://doi.org/10.1007/s11356-015-4866-zspa
dc.relation.referencesSchneider, J., Reckmeier, C. J., Xiong, Y., Von Seckendorff, M., Susha, A. S., Kasak, P., & Rogach, A. L. (2017). Molecular fluorescence in citric acid-based carbon dots. Journal of Physical Chemistry C, 121, 2014–2022. https://doi.org/10.1021/acs.jpcc.6b12519spa
dc.relation.referencesSendão, R., Martínez, M. del V., Algarra, M., Esteves, J. C. G., & Pinto, L. (2020). Comparative life cycle assessment of bottom-up synthesis routes for carbon dots derived from citric acid and urea. Journal of Cleaner Production, 254, 1–10. https://doi.org/10.1016/j.jclepro.2020.120080spa
dc.relation.referencesShahriari, M., Li, G., Liu, L., Sattar, M., Chen, L., Zhong, C., & Hong, F. F. (2022). A poly-L-lysine-bonded TEMPO-oxidized bacterial nanocellulose-based antibacterial dressing for infected wound treatment. Carbohydrate Polymers, 287(October 2021), 119266. https://doi.org/10.1016/j.carbpol.2022.119266spa
dc.relation.referencesSong, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, T. T., & Guo, M. (2020). Luminescent carbon quantum dots/nanofibrillated cellulose composite aerogel for monitoring adsorption of heavy metal ions in water. Optical Materials, 100, 109642. https://doi.org/10.1016/j.optmat.2019.109642spa
dc.relation.referencesSousa, H. B. A., Martins, C. S. M., & Prior, J. A. V. (2021). You don’t learn that in school: An updated practical guide to carbon quantum dots. Nanomaterials, 11, 611. https://doi.org/10.3390/nano11030611spa
dc.relation.referencesThanh Hop, T., Mai, D., Duc Cong, T., Y. Nhi, T., Duc Loi, V., Mai Huong, N., & Trinh Tung, N. (2022). A comprehensive study on preparation of nanocellulose from bleached wood pulps by TEMPO-mediated oxidation. Results in Chemistry, 4(September), 100540. https://doi.org/10.1016/j.rechem.2022.100540spa
dc.relation.referencesThresia, R., Mary, R., Antony, T., Tharayil, A., Das, H., Kargarzadeh, H., Jose, C., & Thomas, S. (2022). A review on the best bioadsorbent membrane- nanocellulose for effective removal of pollutants from aqueous solutions. Carbohydrate Polymer Technologies and Applications, 3, 100209. https://doi.org/10.1016/j.carpta.2022.100209spa
dc.relation.referencesTshikovhi, A., Mishra, S. B., & Mishra, A. K. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. International Journal of Biological Macromolecules, 152, 616–632. https://doi.org/10.1016/j.ijbiomac.2020.02.221spa
dc.relation.referencesUmar, E., Ikram, M., Haider, J., Nabgan, W., Haider, A., Imran, M., & Nazir, G. (2023). A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 35, e00529. https://doi.org/10.1016/j.susmat.2022.e00529spa
dc.relation.referencesUNESCO. (2021). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2021. In Organización de las Naciones Unidas. http://www.unwater.org/publications/world-water-development-report-2019/spa
dc.relation.referencesVarsha, P. T., Aswathi, B. S., & Renuka, N. K. (2022). Arrowroot derived carbon dots : Green synthesis and application as an efficient optical probe for fluoride ions. Materials Today: Proceedings, 51, 2417–2421. https://doi.org/10.1016/j.matpr.2021.11.602spa
dc.relation.referencesVisheratina, A., Hesami, L., Wilson, A., Baalbaki, N., Noginova, N., Noginov, M., & Kotov, N. (2022). Hydrothermal synthesis of chiral carbon dots. Chirality, 34(12), 1503–1514. https://doi.org/10.1002/chir.23509spa
dc.relation.referencesWu, B., Zhu, G., Dufresne, A., & Lin, N. (2019). Fluorescent Aerogels Based on Chemical Crosslinking between Nanocellulose and Carbon Dots for Optical Sensor. ACS Applied Materials and Interfaces, 11(17), 16048–16058. https://doi.org/10.1021/acsami.9b02754spa
dc.relation.referencesXu, Y., Xu, Y., Chen, H., Gao, M., Yue, X., & Ni, Y. (2022). Redispersion of dried plant nanocellulose: A review. Carbohydrate Polymers, 294(April), 119830. https://doi.org/10.1016/j.carbpol.2022.119830spa
dc.relation.referencesYao, X., Wang, Y., Li, F., Dalluge, J. J., Orr, G., Hernandez, R., Cui, Q., & Haynes, C. L. (2022). Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid-urea carbon dots. Nanoscale, 14, 9516–9525. https://doi.org/10.1039/d2nr02361jspa
dc.relation.referencesZhang, M., Li, M., Xu, Q., Jiang, W., Hou, M., Guo, L., Wang, N., Zhao, Y., & Liu, L. (2022). Nanocellulose-based aerogels with devisable structure and tunable properties via ice-template induced self-assembly. Industrial Crops & Products, 179, 114701. https://doi.org/10.1016/j.indcrop.2022.114701spa
dc.relation.referencesZhang, Q., Wang, R., Feng, B., Zhong, X., & Ostrikov, K. (Ken). (2021). Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 12, 6856. https://doi.org/10.1038/s41467-021-27071-4spa
dc.relation.referencesZhao, M., Huang, Z., Wang, S., Zhang, L., & Zhou, Y. (2019). Design of L-Cysteine Functionalized UiO-66 MOFs for Selective Adsorption of Hg(II) in Aqueous Medium. ACS Applied Materials and Interfaces, 11(50), 46973–46983. https://doi.org/10.1021/acsami.9b17508spa
dc.relation.referencesZieliński, B., Miądlicki, P., & Przepiórski, J. (2022). Development of activated carbon for removal of pesticides from water: case study. Scientific Reports, 12, 20869. https://doi.org/10.1038/s41598-022-25247-6spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.localMagister en Ciencias y Tecnologías Ambientalesspa
dc.subject.keywordAerogelspa
dc.subject.keywordNanomaterialsspa
dc.subject.keywordPollutionspa
dc.subject.keywordRemediationspa
dc.subject.keywordRemovalspa
dc.subject.lembMetales pesadosspa
dc.subject.lembAerogelesspa
dc.subject.lembProcesos bioquímicos y fisiológicosspa
dc.subject.proposalAerogelspa
dc.subject.proposalContaminaciónspa
dc.subject.proposalNanomaterialesspa
dc.subject.proposalRemediaciónspa
dc.subject.proposalRemociónspa
dc.titleAerogeles de Nanocelulosa Bacteriana: Una Alternativa Ambiental para la Remoción de Metales Pesados en Matrices Acuosasspa
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 4 de 4
Thumbnail USTA
Nombre:
2023PaulaPeña.pdf
Tamaño:
2.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2023PaulaPeña1.pdf
Tamaño:
360.64 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación Facultad
Thumbnail USTA
Nombre:
2023PaulaPeña2.pdf
Tamaño:
205.11 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de publicación
Thumbnail USTA
Nombre:
2023PaulaPeña3.pdf
Tamaño:
3.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Apéndices

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: