Identificación microbiológica de tres nichos orales y su asociación con las características clínicas y sociodemográficas de pacientes con caries dental. Estudio Piloto.
dc.contributor.advisor | Flórez Salamanca, Elkin Jahir | |
dc.contributor.advisor | Herrera Sandoval, Laura Viviana | |
dc.contributor.author | Jaime Ospina, Gustavo Andrés | |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2023-10-27T14:16:15Z | |
dc.date.available | 2023-10-27T14:16:15Z | |
dc.date.issued | 2023-10-26 | |
dc.description | Introducción: La caries dental es una enfermedad que afecta a un gran porcentaje de la población. Su origen está asociado a la presencia de microorganismos que habitan los biofilms orales que metabolizan azucares provenientes de la dieta en ácidos orgánicos que producen desmineralización de las superficies dentales. Entender las variaciones en la composición de estos biofilms nos permite desarrollar mejores estrategias para la prevención de la patología y el control de su progresión. Objetivo: Evaluar la composición microbiológica presente en tres nichos de la cavidad oral de pacientes con caries dental y relacionarlas con características clínicas y sociodemográficas. Materiales y métodos: Se realizó estudio de corte transversal con 28 pacientes adultos que asistieron a clínicas de la Facultad de Odontología de la Universidad Santo Tomás, divididos en dos grupos de 14 participantes según la presencia o ausencia de caries cavitacional activa (moderada o severa). Se registraron datos sobre aspectos sociodemográficos, frecuencia alimenticia, hábitos asociados a cavidad oral e índice COP. Recolección de muestras de saliva, biofilm supragingival y dentina cariada. Cultivo microbiológico en placas de agar para cuatro grupos microbianos, conteo de UFC e identificación macro-microscópica. Análisis estadístico en STATA 14. Resultados: Mayor presencia de estreptococos del grupo mutans en saliva vs dentina (p=0,0078) en grupo caries y en saliva vs biofilm (p<0,0001) en grupo sano, Lactobacillus spp. en saliva vs biofilm (p=0,0166) en grupo sano, Candida spp. en saliva vs biofilm (p=0,0887) en grupo caries. Mayor presencia de estreptococos en participantes con buena higiene oral en saliva (p=0,0308) y biofilm (p=0,0051) y con lesiones cavitacionales activas en saliva (p=0,0001) y biofilm (p=0,0149), Lactobacillus spp. en participantes clínicamente sanos en saliva (p=0,0002) y biofilm (p=0,0003), Candida spp. en participantes que consumen más de 4 comidas al día en saliva (p=0,0156). Correlación positiva media para Candida spp. en saliva (p=0,0208; r=0,4347). Presencia de Enterococcus spp. muy baja para realizar análisis. Conclusiones: Existe variación en la composición microbiológica de los tres nichos anatómicos entre salud y los diferentes estados de enfermedad. | spa |
dc.description.abstract | Introduction: Dental caries is a disease that affects a large percentage of the population. Its origin is associated with the presence of microorganisms that inhabit oral biofilms that metabolize sugars from the diet into organic acids that produce demineralization of tooth surfaces. Understanding the variations in the composition of these biofilms allows us to develop better strategies for the prevention of pathology and the control of its progression. Objective: To evaluate the microbiological composition present in three niches of the oral cavity of patients with dental caries and their relation with clinical and sociodemographic characteristics. Materials and methods: A cross-sectional study was carried out with 28 adult patients who attended the clinics at the Dental School of the Santo Tomás University, divided into two groups of 14 participants according to the presence or absence of active cavitational caries (moderate or severe). Data on sociodemographic aspects, food frequency, habits associated with the oral cavity and DMF index were recorded. Collection of saliva, supragingival biofilm and carious dentin samples. Microbiological culture on agar plates for four microbial groups, CFU counting and macro-microscopic identification. Statistical analysis in STATA 14. Results: Greater presence of mutans streptococci in saliva vs dentin (p=0.0078) in caries group and in saliva vs biofilm (p<0.0001) in healthy group, Lactobacillus spp. in saliva vs biofilm (p=0.0166) in healthy group, Candida spp. in saliva vs biofilm (p=0.0887) in caries group. Greater presence of streptococci in participants with good oral hygiene in saliva (p=0.0308) and biofilm (p=0.0051) and with active cavitated caries lesions in saliva (p=0.0001) and biofilm (p=0.0149 ), Lactobacillus spp. in healthy participants in saliva (p=0.0002) and biofilm (p=0.0003), Candida spp. in participants who consume more than 4 meals a day in saliva (p=0.0156). Moderate positive correlation for Candida spp. in saliva (p=0.0208; r=0.4347). Presence of Enterococcus spp. too low to perform analysis. Conclusions: There is variation in the microbiological composition of the three anatomical niches between health and the varying stages of disease. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Odontología | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Jaime Ospina, G. A. (2023). Identificación microbiológica de tres nichos orales y su asociación con las características clínicas y sociodemográficas de pacientes con caries dental. Estudio Piloto. [Tesis de posgrado]. Universidad Santo Tomás, Bucaramanga, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/52833 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Odontología | spa |
dc.publisher.program | Maestría Odontología | spa |
dc.relation.references | Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., ... & Paster, B. J. (2008). Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of clinical microbiology, 46(4), 1407-1417. | spa |
dc.relation.references | Abranches, J., Zeng, L., Kajfasz, J. K., Palmer, S. R., Chakraborty, B., Wen, Z. T., ... & Lemos, J. A. (2018). Biology of oral streptococci. Microbiology spectrum, 6(5), 6-5. | spa |
dc.relation.references | Ahn, S. J., Qu, M. D., Roberts, E., Burne, R. A., & Rice, K. C. (2012). Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC microbiology, 12, 1-12. | spa |
dc.relation.references | Ahn, S. J., Rice, K. C., Oleas, J., Bayles, K. W., & Burne, R. A. (2010). The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology, 156(Pt 10), 3136. | spa |
dc.relation.references | Akdeniz, B. G., Koparal, E., Şen, B. H., Ateş, M., & Denizci, A. A. (2002). Prevalence of Candida albicans in oral cavities and root canals of children. Journal of dentistry for children, 69(3), 289-292. | spa |
dc.relation.references | Al-Ahmad, A., Maier, J., Follo, M., Spitzmüller, B., Wittmer, A., Hellwig, E., ... & Jonas, D. (2010). Food-borne enterococci integrate into oral biofilm: an in vivo study. Journal of Endodontics, 36(11), 1812-1819. | spa |
dc.relation.references | Al-Ahmad, A., Müller, N., Wiedmann-Al-Ahmad, M., Sava, I., Hübner, J., Follo, M., ... & Hellwig, E. (2009). Endodontic and salivary isolates of Enterococcus faecalis integrate into biofilm from human salivary bacteria cultivated in vitro. Journal of Endodontics, 35(7), 986-991. | spa |
dc.relation.references | Alshanta, O. A., Albashaireh, K., McKloud, E., Delaney, C., Kean, R., McLean, W., & Ramage, G. (2022). Candida albicans and Enterococcus faecalis biofilm frenemies: When the relationship sours. Biofilm, 4, 100072. | spa |
dc.relation.references | Aly, S. M., Elshama, S. S., & Ali, N. M. (2011). Comparison of Tris-EDTA and Trehalose on DNA Quality under Different Storage Conditions" Medico-legal View. Ain-Shams Journal of Forensic Medicine and Clinical Toxicology, 15(January), 94-98. | spa |
dc.relation.references | Azevedo, M. S., Van de Sande, F. H., Maske, T. T., Signori, C., Romano, A. R., & Cenci, M. S. (2014). Correlation between the cariogenic response in biofilm generated from saliva of mother/child pairs. Biofouling, 30(8), 903-909. | spa |
dc.relation.references | Bazireh, H., Shariati, P., Azimzadeh Jamalkandi, S., Ahmadi, A., & Boroumand, M. A. (2020). Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Frontiers in microbiology, 11, 597946. | spa |
dc.relation.references | Becker, M. R., Paster, B. J., Leys, E. J., Moeschberger, M. L., Kenyon, S. G., Galvin, J. L., & Griffen, A. L. (2002). Molecular analysis of bacterial species associated with childhood caries. Journal of clinical microbiology, 40(3), 1001-1009. | spa |
dc.relation.references | Belda-Ferre, P., Alcaraz, L. D., Cabrera-Rubio, R., Romero, H., Simon-Soro, A., Pignatelli, M., & Mira, A. (2012). The oral metagenome in health and disease. The ISME journal, 6(1), 46-56. | spa |
dc.relation.references | Belstrøm, D. (2020). The salivary microbiota in health and disease. Journal of Oral Microbiology, 12(1), 1723975. | spa |
dc.relation.references | Bowen WH, Koo H. Biology of Streptococcus mutans derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilm. Caries Res. 2011; 45(1): 69-86. | spa |
dc.relation.references | Byun, R., Nadkarni, M. A., Chhour, K. L., Martin, F. E., Jacques, N. A., & Hunter, N. (2004). Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. Journal of clinical microbiology, 42(7), 3128-3136. | spa |
dc.relation.references | Celik, Z. C., Cakiris, A., Abaci, N., Yaniikoglu, F., Ilgin, C., Ekmekci, S. S., Celik, H., & Tagtekin, D. (2021). The complex microbiome of caries-active and caries-free supragingival plaques in permanent dentition. Nigerian journal of clinical practice, 24(10), 1535–1540. | spa |
dc.relation.references | Cerón-Bastidas, X. A. (2015). The ICDAS system as a complementary method for the diagnosis of dental caries. CES Odontología, 28(2), 100-109. | spa |
dc.relation.references | Chaussain, C., Boukpessi, T., Khaddam, M., Tjaderhane, L., George, A., & Menashi, S. (2013). Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration. Frontiers in physiology, 4, 308. | spa |
dc.relation.references | Chen, Y., Dou, G., Wang, D., Yang, J., Zhang, Y., Garnett, J. A., Chen, Y., Wang, Y., & Xia, B. (2021). Comparative Microbial Profiles of Caries and Black Extrinsic Tooth Stain in Primary Dentition. Caries research, 55(4), 310–321. | spa |
dc.relation.references | Costalonga, M., & Herzberg, M. C. (2014). The oral microbiome and the immunobiology of periodontal disease and caries. Immunology letters, 162(2), 22-38. Dye B. A. (2017). The Global Burden of Oral Disease: Research and Public Health Significance. Journal of dental research, 96(4), 361–363. | spa |
dc.relation.references | de Carvalho, F. G., Silva, D. S., Hebling, J., Spolidorio, L. C., & Spolidorio, D. M. P. (2006). Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Archives of oral biology, 51(11), 1024-1028. | spa |
dc.relation.references | Eidt, G., Waltermann, E. D. M., Hilgert, J. B., & Arthur, R. A. (2020). Candida and dental caries in children, adolescents and adults: A systematic review and meta-analysis. Archives of Oral Biology, 119, 104876. | spa |
dc.relation.references | Eriksson, L., Lif Holgerson, P., & Johansson, I. (2017). Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community. Scientific reports, 7(1), 1-12. | spa |
dc.relation.references | Falsetta, M. L., Klein, M. I., Colonne, P. M., Scott-Anne, K., Gregoire, S., Pai, C. H., ... & Koo, H. (2014). Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infection and immunity, 82(5), 1968-1981. | spa |
dc.relation.references | Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633. | spa |
dc.relation.references | Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilm: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575. | spa |
dc.relation.references | Gaeta, C., Marruganti, C., Ali, I. A., Fabbro, A., Pinzauti, D., Santoro, F., ... & Grandini, S. (2023). The presence of Enterococcus faecalis in saliva as a risk factor for endodontic infection. Frontiers in Cellular and Infection Microbiology, 13, 1061645. | spa |
dc.relation.references | Gilmore, M. S., Clewell, D. B., Courvalin, P., Dunny, G. M., Murray, B. E., & Rice, L. B. (Eds.). (2002). The enterococci: pathogenesis, molecular biology, and antibiotic resistance (Vol. 10, p. 439). Washington, DC: ASM press. | spa |
dc.relation.references | Goldberg, M., Kulkarni, A. B., Young, M., & Boskey, A. (2011). Dentin: Structure, Composition and Mineralization: The role of dentin ECM in dentin formation and mineralization. Frontiers in bioscience (Elite edition), 3, 711. | spa |
dc.relation.references | Goldstein, E. J., Tyrrell, K. L., & Citron, D. M. (2015). Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clinical Infectious Diseases, 60(suppl_2), S98-S107. | spa |
dc.relation.references | Gugnani, N., Pandit, I. K., Srivastava, N., Gupta, M., & Sharma, M. (2011). International caries detection and assessment system (ICDAS): a new concept. International journal of clinical pediatric dentistry, 4(2), 93. | spa |
dc.relation.references | Hannig, M., & Joiner, A. (2006). The structure, function and properties of the acquired pellicle. Monographs in oral science, 19, 29. | spa |
dc.relation.references | Havsed, K., Stensson, M., Jansson, H., Carda-Diéguez, M., Pedersen, A., Neilands, J., Svensäter, G., & Mira, A. (2021). Bacterial Composition and Metabolomics of Dental Plaque From Adolescents. Frontiers in cellular and infection microbiology, 11, 716493. | spa |
dc.relation.references | Hicks J, Garcia-Godoy F, Flaitz C. Biological factor in dental caries: role of saliva and dental plaque in dynamic process of demineralization and remineralization (Part 1). J Clin Pediatr Dent 2003; 28 (1): 47 – 52. | spa |
dc.relation.references | Hicks J, Garcia-Godoy F, Flaitz C. Biological factor in dental caries: enamel structure and caries process in the dynamic process of demineralization and remineralization (Part 2). J Clin Pediatr Dent 2004; 28: (2) 119 - 124. | spa |
dc.relation.references | Hooshangi, S., & Bentley, W. E. (2008). From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Current Opinion in Biotechnology, 19(6), 550-555. | spa |
dc.relation.references | Huang, X., Bao, J., Zeng, Y., Meng, G., Lu, X., Wu, T. T., ... & Xiao, J. (2023). Anti-cariogenic Properties of Lactobacillus plantarum in the Utilization of Galacto-Oligosaccharide. Nutrients, 15(9), 2017. | spa |
dc.relation.references | Hujoel, P. P., & Lingström, P. (2017). Nutrition, dental caries and periodontal disease: a narrative review. Journal of clinical periodontology, 44, S79-S84. | spa |
dc.relation.references | Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. nature, 486(7402), 207. | spa |
dc.relation.references | Katharios-Lanwermeyer, S., Xi, C., Jakubovics, N. S., & Rickard, A. H. (2014). Mini-review: microbial coaggregation: ubiquity and implications for biofilm development. Biofouling, 30(10), 1235-1251. | spa |
dc.relation.references | Kazor, C. E., Mitchell, P. M., Lee, A. M., Stokes, L. N., Loesche, W. J., Dewhirst, F. E., & Paster, B. J. (2003). Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. Journal of clinical microbiology, 41(2), 558-563. | spa |
dc.relation.references | Keijser, B. J. F., Zaura, E., Huse, S. M., Van Der Vossen, J. M. B. M., Schuren, F. H. J., Montijn, R. C., ... & Crielaard, W. J. J. O. D. R. (2008). Pyrosequencing analysis of the oral microflora of healthy adults. Journal of dental research, 87(11), 1016-1020. | spa |
dc.relation.references | Kidd, E. A. M., & Fejerskov, O. (2004). What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilm. Journal of dental research, 83(1_suppl), 35-38. | spa |
dc.relation.references | Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, et al. The oral microbiome - an update for oral healthcare professionals. Br Dent J. 2016; 221 (10): 657–66. | spa |
dc.relation.references | Kim, H. E., Liu, Y., Dhall, A., Bawazir, M., Koo, H., & Hwang, G. (2021). Synergism of Streptococcus mutans and Candida albicans reinforces biofilm maturation and acidogenicity in saliva: an in vitro study. Frontiers in cellular and infection microbiology, 932. | spa |
dc.relation.references | Klein, M. I., Hwang, G., Santos, P. H., Campanella, O. H., & Koo, H. (2015). Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Frontiers in cellular and infection microbiology, 5, 10. | spa |
dc.relation.references | Klinke T, Kneist S, de Soet JJ, Kuhlisch E, Mauersberger S, Forster A, Klimm W. Acid production by oral strain of C. albicans and Lactobacilli. Caries Res. 2009; 43:83–91. | spa |
dc.relation.references | Krasse, B. (2001). The Vipeholm Dental Caries Study: recollections and reflections 50 years later. Journal of dental research, 80(9), 1785-1788. | spa |
dc.relation.references | Liang, J., Zhou, Y., Tang, G., Wu, R., & Lin, H. (2023). Exploration of the Main Antibiofilm Substance of Lactobacillus plantarum ATCC 14917 and Its Effect against Streptococcus mutans. International Journal of Molecular Sciences, 24(3), 1986. | spa |
dc.relation.references | Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn SJ, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilm, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol. 2014; 196(13): 2355-66. | spa |
dc.relation.references | Liébana Ureña, J. (2002). Microbiología oral (No. 616.3101 LIE 2002). | spa |
dc.relation.references | Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiological reviews, 50(4), 353-380. | spa |
dc.relation.references | Manríquez Vásquez, V., Toloza Maturana, L., & Guzmán Jofre, L. (2019). Actividad antimicrobiana y antibiofilm de sales derivadas de N-cinamilimidazol con diferentes longitudes de cadena frente a diferentes muestras de S. mutans (Doctoral dissertation, Universidad de Talca (Chile). Escuela de Tecnología Médica.). | spa |
dc.relation.references | Marsh, P. D. (1994). Microbial ecology of dental plaque and its significance in health and disease. Advances in dental research, 8(2), 263–271. | spa |
dc.relation.references | Marsh, P. D. (2003). Are dental diseases examples of ecological catastrophes?. Microbiology, 149(2), 279-294. | spa |
dc.relation.references | Marsh, P. D. (2018). In sickness and in health—what does the oral microbiome mean to us? An ecological perspective. Advances in dental research, 29(1), 60-65. | spa |
dc.relation.references | Marsh, P. D., Do, T., Beighton, D., & Devine, D. A. (2016). Influence of saliva on the oral microbiota. Periodontology 2000, 70(1), 80-92. | spa |
dc.relation.references | Martínez-Pabón, M. C., Morales-Uchima, S. M., & Martínez-Delgado, C. M. (2013). Caries dental en adultos jóvenes en relación con características microbiológicas y fisicoquímicas de la saliva. Revista de Salud Pública, 15, 844-856. | spa |
dc.relation.references | Metwalli, K. H., Khan, S. A., Krom, B. P., & Jabra-Rizk, M. A. (2013). Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS pathogens, 9(10), e1003616. | spa |
dc.relation.references | Ministerio de Salud. (2012). Plan Decenal de Salud. Dimensión vida saludable y condiciones no transmisibles. | spa |
dc.relation.references | Ministerio de Salud. (2014). IV Estudio Nacional de Salud Bucal. ENSAB IV. Situación en Salud Bucal. Para Saber cómo estamos y saber qué hacemos. | spa |
dc.relation.references | Moalic, E., Gestalin, A., Quinio, D., Gest, P. E., Zerilli, A., & Le Flohic, A. M. (2001). The extent of oral fungal flora in 353 students and possible relationships with dental caries. Caries research, 35(2), 149-155. | spa |
dc.relation.references | Neuhaus FC, Baddiley J. A contiem um of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev. 2003; 67(4): 686-723. | spa |
dc.relation.references | Núñez, D. P., & García Bacallao, L. (2010). Bioquímica de la caries dental. Revista Habanera de Ciencias Médicas, 9(2), 156-166. | spa |
dc.relation.references | Ojeda-Garcés, J. C., Oviedo-García, E., & Salas, L. A. (2013). Streptococcus mutans y caries dental. CES odontologia, 26(1), 44-56. | spa |
dc.relation.references | Onose, H., & Sandham, H. J. (1976). pH changes during culture of human dental plaque streptococci on mitis-salivarius agar. Archives of oral biology, 21(5), 291-296. | spa |
dc.relation.references | Pereira Prado, V., Asquino, N., Apellaniz, D., Bueno Rossy, L., Tapia, G., & Bologna Molina, R. (2016). Metaloproteinasas de la matriz extracelular (mmps) en Odontología. Odontoestomatología, 18(28), 20-29. | spa |
dc.relation.references | Pereira, D. F. A., Seneviratne, C. J., Koga‐Ito, C. Y., & Samaranayake, L. P. (2018). Is the oral fungal pathogen Candida albicans a cariogen?. Oral diseases, 24(4), 518-526. | spa |
dc.relation.references | Perry JA, Cvitkovitch DG, Lévesque CM. Cell death in Streptococcus mutans biofilm: a link between CSP and extracellular DNA. FEMS Microbiol Lett. 2009; 299(2): 261-6. | spa |
dc.relation.references | Petersen, P. E. (2003). The World Oral Health Report 2003: continuous improvement of oral health in the 21st century–the approach of the WHO Global Oral Health Programme. Community Dentistry and oral epidemiology, 31, 3-24. | spa |
dc.relation.references | Petrova, O. E., & Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Current opinion in microbiology, 30, 67-78. | spa |
dc.relation.references | Pitts, N. B. (2004). Modern concepts of caries measurement. Journal of dental research, 83(1_suppl), 43-47. | spa |
dc.relation.references | Pitts, N. B., Zero, D. T., Marsh, P. D., Ekstrand, K., Weintraub, J. A., Ramos-Gomez, F., & Ismail, A. (2017). Dental caries. Nature reviews Disease primers, 3(1), 1-16. | spa |
dc.relation.references | Plazas Cristancho, L. A. (2015). Recuento e Identificación de streptococcus mutans de saliva en niños con caries dental Seguimiento a 3 y 6 meses después de un proceso educativo. | spa |
dc.relation.references | Procop, G. W., Church, D. L., Hall, G. S., & Janda, W. M. (2020). Koneman's color atlas and textbook of diagnostic microbiology. Jones & Bartlett Publishers. | spa |
dc.relation.references | Qudeimat, M. A., Alyahya, A., Karched, M., Behbehani, J., & Salako, N. O. (2021). Dental plaque microbiota profiles of children with caries-free and caries-active dentition. Journal of dentistry, 104, 103539. | spa |
dc.relation.references | Raja, M., Hannan, A., & Ali, K. (2010). Association of oral candidal carriage with dental caries in children. Caries research, 44(3), 272-276. | spa |
dc.relation.references | Rams, T. E., Feik, D., Young, V., Hammond, B. F., & Slots, J. (1992). Enterococci in human periodontitis. Oral microbiology and immunology, 7(4), 249-252. | spa |
dc.relation.references | Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E., & Handley, P. S. (2003). Bacterial coaggregation: an integral process in the development of multi-species biofilm. Trends in microbiology, 11(2), 94–100. | spa |
dc.relation.references | Rôças, I. N., Lima, K. C., Assunção, I. V., Gomes, P. N., Bracks, I. V., & Siqueira Jr, J. F. (2015). Advanced caries microbiota in teeth with irreversible pulpitis. Journal of endodontics, 41(9), 1450-1455. | spa |
dc.relation.references | Rosier, B. T., De Jager, M., Zaura, E., & Krom, B. P. (2014). Historical and contemporary hypotheses on the development of oral diseases: are we there yet?. Frontiers in cellular and infection microbiology, 4, 92. | spa |
dc.relation.references | Rosier, B. T., Marsh, P. D., & Mira, A. (2018). Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. Journal of dental research, 97(4), 371-380. | spa |
dc.relation.references | Rupf, S., Laczny, C. C., Galata, V., Backes, C., Keller, A., Umanskaya, N., ... & Hannig, C. (2018). Comparison of initial oral microbiomes of young adults with and without cavitated dentin caries lesions using an in situ biofilm model. Scientific reports, 8(1), 1-10. | spa |
dc.relation.references | Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine, 2(11), a012427. | spa |
dc.relation.references | Sarmiento Rangel, Y., Hazel Vergel, A., & Cárdenas Caro, D. M. (2013). Evaluation of the stability of Trichoderma sp. and Azotobacter sp. preserved by different methods. Revista Colombiana de Biotecnología, 15(1), 150-158. | spa |
dc.relation.references | Schneider, M. V., & Orchard, S. (2011). Omics technologies, data and bioinformatics principles. Bioinformatics for omics Data, 3-30. | spa |
dc.relation.references | Segata, N., Haake, S. K., Mannon, P., Lemon, K. P., Waldron, L., Gevers, D., ... & Izard, J. (2012). Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome biology, 13(6), 1-18. | spa |
dc.relation.references | Selwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. The Lancet, 369(9555), 51-59. | spa |
dc.relation.references | Shi, W., Tian, J., Xu, H., Zhou, Q., & Qin, M. (2018). Distinctions and associations between the microbiota of saliva and supragingival plaque of permanent and deciduous teeth. PloS one, 13(7), e0200337. | spa |
dc.relation.references | Simón-Soro Á, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res. 2013; 92 (7): 616–21. | spa |
dc.relation.references | Simón-Soro, A., & Mira, A. (2015). Solving the etiology of dental caries. Trends in microbiology, 23(2), 76-82. | spa |
dc.relation.references | Smith, A. V., & Bowen, W. H. (2000). In situ studies of pellicle formation on hydroxyapatite discs. Archives of Oral Biology, 45(4), 277-291. | spa |
dc.relation.references | Stuart, C. H., Schwartz, S. A., Beeson, T. J., & Owatz, C. B. (2006). Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. Journal of endodontics, 32(2), 93-98. | spa |
dc.relation.references | Sutula, J., Coulthwaite, L., & Verran, J. (2012). Culture media for differential isolation of Lactobacillus casei Shirota from oral samples. Journal of microbiological methods, 90(1), 65-71. | spa |
dc.relation.references | Takahashi N. (2015). Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?". Journal of dental research, 94(12), 1628–1637. | spa |
dc.relation.references | Takahashi, N., & Nyvad, B. (2011). The role of bacteria in the caries process: ecological perspectives. Journal of dental research, 90(3), 294–303. | spa |
dc.relation.references | Theilade, E. (1986). The non‐specific theory in microbial etiology of inflammatory periodontal diseases. Journal of clinical periodontology, 13(10), 905-911. | spa |
dc.relation.references | Vieira, A. R., Hiller, N. L., Powell, E., Kim, L. H. J., Spirk, T., Modesto, A., & Kreft, R. (2019). Profiling microorganisms in whole saliva of children with and without dental caries. Clinical and Experimental Dental Research, 5(4), 438-446. | spa |
dc.relation.references | Wasfi, R., Abd El‐Rahman, O. A., Zafer, M. M., & Ashour, H. M. (2018). Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries‐inducing Streptococcus mutans. Journal of cellular and molecular medicine, 22(3), 1972-1983. | spa |
dc.relation.references | Xu X, He J, Xue J, Wang Y, Li K, Zhang. K, et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol. 2014; 17 (3): 699–710. | spa |
dc.relation.references | Yang, X. Q., Zhang, Q., Lu, L. Y., Yang, R., Liu, Y., & Zou, J. (2012). Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries. Archives of oral biology, 57(8), 1048-1053. | spa |
dc.relation.references | Yang, X., He, L., Yan, S., Chen, X., & Que, G. (2021). The impact of caries status on supragingival plaque and salivary microbiome in children with mixed dentition: a cross-sectional survey. BMC oral health, 21(1), 319. | spa |
dc.relation.references | Zhang, Y., Wang, X., Li, H., Ni, C., Du, Z., & Yan, F. (2018). Human oral microbiota and its modulation for oral health. Biomedicine & Pharmacotherapy, 99, 883-893. | spa |
dc.relation.references | Zheng, J., Wu, Z., Niu, K., Xie, Y., Hu, X., Fu, J., ... & Wu, L. (2019). Microbiome of deep dentinal caries from reversible pulpitis to irreversible pulpitis. Journal of endodontics, 45(3), 302-309. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.subject.keyword | Dental biofilm | spa |
dc.subject.keyword | Dental caries | spa |
dc.subject.keyword | Ecological niche | spa |
dc.subject.keyword | Microbiology | spa |
dc.subject.keyword | Saliva | spa |
dc.subject.lemb | Caries - Investigaciones | spa |
dc.subject.lemb | Microbiología - Investigaciones | spa |
dc.subject.lemb | Enfermedades de la boca - Investigaciones | spa |
dc.subject.lemb | Consultas odontológicas | spa |
dc.subject.proposal | Biofilm dental | spa |
dc.subject.proposal | Caries dental | spa |
dc.subject.proposal | Microbiología | spa |
dc.subject.proposal | Nicho ecológico | spa |
dc.subject.proposal | Saliva | spa |
dc.title | Identificación microbiológica de tres nichos orales y su asociación con las características clínicas y sociodemográficas de pacientes con caries dental. Estudio Piloto. | spa |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/masterThesis | |
dc.type.local | Tesis de maestría | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3

- Nombre:
- 2023JaimeGustavo.pdf
- Tamaño:
- 1.59 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2023JaimeGustavo1.pdf
- Tamaño:
- 208.9 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Aprobación Facultad

- Nombre:
- 2023JaimeGustavo2.pdf
- Tamaño:
- 173.56 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Acuerdo de publicación
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: