Estudio del potencial de aprovechamiento de la biomasa residual de Cannabis sativa y cáñamo. Análisis cienciométrico y minería de texto.

dc.contributor.advisorCervantes Díaz, Martha
dc.contributor.advisorBarón, Mario Alberto
dc.contributor.authorMéndez Angarita, Maritza
dc.contributor.authorRodríguez González, Leydy Gabriela
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2023-03-06T16:08:48Z
dc.date.available2023-03-06T16:08:48Z
dc.date.issued2023-03-03
dc.descriptionEn los últimos 5 años la industria del cannabis ha crecido exponencialmente tras la legalización de su uso con fines medicinales y recreativos en varios países a nivel mundial y es de anotar que el interés por el aprovechamiento de sus subproductos ha aumentado de la misma forma buscando disminuir la cantidad de producto no aprovechado y optimizar costos. Este análisis cienciométrico se desarrolló a través del uso de la base de datos Scopus para la revisión de artículos científicos, los criterios de búsqueda fueron empleados en la aplicación del programa especializado para minería de texto VantagePoint y el programa de visualización de redes bibliométricas VOSviewer. Se encontró una mayor actividad investigativa en los años 2021 y 2022, las áreas de conocimiento que encabezan estas investigaciones son la agricultura, las ciencias biológicas (13,7%) y la ingeniería química (12,1%) y los países que lideran estas publicaciones son Italia con 50 documentos, Estados Unidos (38) y China (37) y Colombia presenta 2 registros. Las palabras clave con las frecuencias de ocurrencia más altas y la conexión más fuerte son Hemp (268, 2179), Cannabis sativa (295, 1373) y biomass (185, 1084). Para el establecimiento de los indicadores cienciométricos de la actividad inventiva, se consultó la base de datos Lens Patent, en la cual se encontró a los sectores química, fibra y construcción como principales representantes. Este estudio señala que, hay un cambio de paradigma en la investigación del cannabis ofreciendo la oportunidad de aprovechamiento eficiente de la totalidad de la planta en diferentes campos del sector productivo.spa
dc.description.abstractIn the last 5 years, the cannabis industry has grown exponentially after the legalization of its use for medicinal and recreational purposes in several countries worldwide and it is noteworthy that the interest in the use of its by-products has warned in the same way, seeking to decrease the amount of unused product and optimized costs. This scientific analysis was presented through the use of the Scopus database for the review of scientific articles, the search criteria were used in the application of the specialized program for text mining VantagePoint and the visualization program of bibliometric networks VOSviewer, finding a greater research activity in the years 2021 and 2022, the areas of knowledge that lead these investigations are agriculture, biological sciences (13.7%) and chemical engineering (12.1%) and the countries that lead these publications are Italy with 50 documents, the United States (38) and China (37) and Colombia present 2 records. The keywords with the highest frequencies of occurrences and the strongest connection: Hemp (268, 2179), Cannabis sativa (295, 1373), and biomass (185, 1084). For the establishment of scientometric indicators of inventive activity, the Lens patent database was consulted, finding the chemical, fiber, and construction sectors as the main representatives. This study indicates that there has been a paradigm shift in cannabis research, offering the opportunity for efficient use of the entire plant in different fields of the productive sector.spa
dc.description.degreelevelMaestríaspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMéndez Angarita, M. y Rodríguez González, L. G. (2023). Estudio del potencial de aprovechamiento de la biomasa residual de Cannabis sativa y cáñamo. Análisis cienciométrico y minería de texto. [Trabajo de posgrado]. Universidad Santo Tomás. Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/49826
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programMaestría Ciencias y Tecnologías Ambientalesspa
dc.relation.referencesAhmed, S., Gao, X., Jahan, M. A., Adams, M., Wu, N., & Kovinich, N. (2021). Nanoparticle-based genetic transformation of Cannabis sativa. Journal of Biotechnology, 326, 48–51. https://doi.org/10.1016/j.jbiotec.2020.12.014spa
dc.relation.referencesAmaducci, S., Scordia, D., Liu, F. H., Zhang, Q., Guo, H., Testa, G., & Cosentino, S. L. (2015). Key cultivation techniques for hemp in Europe and China. Industrial Crops and Products, 68, 2–16. https://doi.org/10.1016/J.INDCROP.2014.06.041spa
dc.relation.referencesAnjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161–174. https://doi.org/10.1016/J.IJBIOMAC.2016.04.069spa
dc.relation.referencesAnjum, R., Krakat, N., Toufiq Reza, M., & Klocke, M. (2014). Assessment of mutagenic potential of pyrolysis biochars by Ames Salmonella/mammalian-microsomal mutagenicity test. Ecotoxicology and Environmental Safety, 107, 306–312. https://doi.org/10.1016/j.ecoenv.2014.06.005spa
dc.relation.referencesAscrizzi, R., Ceccarini, L., Tavarini, S., Flamini, G., & Angelini, L. G. (2019). Valorisation of hemp inflorescence after seed harvest: Cultivation site and harvest time influence agronomic characteristics and essential oil yield and composition. Industrial Crops and Products, 139. https://doi.org/10.1016/j.indcrop.2019.111541spa
dc.relation.referencesBag, R., Beaugrand, J., Dole, P., & Kurek, B. (2011). Viscoelastic properties of woody hemp core. Holzforschung, 65(2), 239–247. https://doi.org/10.1515/HF.2010.111spa
dc.relation.referencesBelščak-Cvitanović, A., Vojvodić, A., Bušić, A., Keppler, J., Steffen-Heins, A., & Komes, D. (2018). Encapsulation templated approach to valorization of cocoa husk, poppy and hemp macrostructural and bioactive constituents. Industrial Crops and Products, 112, 402–411. https://doi.org/10.1016/j.indcrop.2017.12.020spa
dc.relation.referencesBrar, K. K., Raheja, Y., Chadha, B. S., Magdouli, S., Brar, S. K., Yang, Y. H., Bhatia, S. K., & Koubaa, A. (2022). A paradigm shift towards production of sustainable bioenergy and advanced products from Cannabis/hemp biomass in Canada. In Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13399-022-02570-6spa
dc.relation.referencesBrazdausks, P., Paze, A., Rizhikovs, J., Puke, M., Meile, K., Vedernikovs, N., Tupciauskas, R., & Andzs, M. (2016). Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives. Biomass and Bioenergy, 89, 98–104. https://doi.org/10.1016/j.biombioe.2016.01.016spa
dc.relation.referencesChristian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B: Engineering, 42(7), 1920–1928. https://doi.org/10.1016/j.compositesb.2011.05.039spa
dc.relation.referencesCongreso de Colombia. (2016). Ley 1787 de 2016.spa
dc.relation.referencesDas, L., Liu, E., Saeed, A., Williams, D. W., Hu, H., Li, C., Ray, A. E., & Shi, J. (2017). Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresource Technology, 244, 641–649. https://doi.org/10.1016/j.biortech.2017.08.008spa
dc.relation.referencesDeguchi, M., Bogush, D., Weeden, H., Spuhler, Z., Potlakayala, S., Kondo, T., Zhang, Z. J., & Rudrabhatla, S. (2020). Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60323-9spa
dc.relation.referencesdi Giacomo, V., Recinella, L., Chiavaroli, A., Orlando, G., Cataldi, A., Rapino, M., di Valerio, V., Politi, M., Antolini, M. D., Acquaviva, A., Ak, G., & Ferrante, C. (2021). Metabolomic profile and antioxidant/anti-inflammatory effects of industrial hemp water extract in fibroblasts, keratinocytes and isolated mouse skin specimens. Antioxidants, 10(1), 1–21. https://doi.org/10.3390/antiox10010044spa
dc.relation.referencesEuromonitor International. (2020, October 11). Se espera que las ventas mundiales de cannabis recreativo legal aumenten un 376% para 2025. Euromonitor International.spa
dc.relation.referencesFAOSTAT. (2019). Food and Agriculture Organization FAO. http://www.fao.org/faostat/en/#data/QCspa
dc.relation.referencesFerrante, C., Recinella, L., Ronci, M., Menghini, L., Brunetti, L., Chiavaroli, A., Leone, S., di Iorio, L., Carradori, S., Tirillini, B., Venanzoni, R., & Orlando, G. (2019). Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food and Chemical Toxicology, 125, 452–461. https://doi.org/10.1016/j.fct.2019.01.035spa
dc.relation.referencesGandolfi, S., Ottolina, G., Riva, S., Fantoni, G. P., & Patel, I. (2013). Complete chemical analysis of carmagnola hemp hurds and structural features of its components. BioResources, 8(2), 2641–2656. https://doi.org/10.15376/biores.8.2.2641-2656spa
dc.relation.referencesGill, P., Soni, S. K., & Kundu, K. (2011). Comparative study of Hemp and Jatropha oil blends used as an alternative fuel in diesel engine. CIGR Journal, 13.spa
dc.relation.referencesGöswein, V., Reichmann, J., Habert, G., & Pittau, F. (2021). Land availability in Europe for a radical shift toward bio-based construction. Sustainable Cities and Society, 70. https://doi.org/10.1016/j.scs.2021.102929spa
dc.relation.referencesGuzmán-Gutiérrez, S. L., Bonilla-Jaime, H., Gómez-Cansino, R., & Reyes-Chilpa, R. (2015). Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sciences, 128, 24–29. https://doi.org/10.1016/J.LFS.2015.02.021spa
dc.relation.referencesJIFE. (2018). Informe de la Junta Internacional de Fiscalización de Estupefacientes correspondiente a 2018. www.incb.orgspa
dc.relation.referencesJIFE. (2021). Informe de la Junta Internacional de Estupefacientes correspondiente a 2021. www.incb.orgspa
dc.relation.referencesKhan, R. U., Durrani, F. R., Chand, N., & Anwar, H. (2010). Influence of feed supplementation with cannabis sativa on quality of broilers carcass. Pakistan Veterinary Journal, 30(1), 34–38.spa
dc.relation.referencesKhattab, M. M., & Dahman, Y. (2019). Production and recovery of poly-3-hydroxybutyrate bioplastics using agro-industrial residues of hemp hurd biomass. Bioprocess and Biosystems Engineering, 42(7), 1115–1127. https://doi.org/10.1007/s00449-019-02109-6spa
dc.relation.referencesKonca, Y., Cimen, B., Yalcin, H., Kaliber, M., & Beyzi, S. B. (2014). Effect of Hempseed (cannabis sativa sp.) inclusion to the diet on performance, carcass and antioxidative activity in Japanese quail (coturnix coturnix japonica). Korean Journal for Food Science of Animal Resources, 34(2), 141–150. https://doi.org/10.5851/kosfa.2014.34.2.141spa
dc.relation.referencesKraszkiewicz, A., Kachel, M., Parafiniuk, S., Zając, G., Niedziółka, I., & Sprawka, M. (2019). Assessment of the Possibility of Using Hemp Biomass (Cannabis Sativa L.) for Energy Purposes: A Case Study. Applied Sciences, 9(20), 4437. https://doi.org/10.3390/app9204437spa
dc.relation.referencesKreuger, E., Sipos, B., Zacchi, G., Svensson, S.-E., & Björnsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresource Technology, 102(3), 3457–3465. https://doi.org/10.1016/j.biortech.2010.10.126spa
dc.relation.referencesKuglarz, M., Alvarado-Morales, M., Karakashev, D., & Angelidaki, I. (2016). Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresource Technology, 200, 639–647. https://doi.org/10.1016/j.biortech.2015.10.081spa
dc.relation.referencesLachenmeier, D. W., Habel, S., Fischer, B., Herbi, F., Zerbe, Y., Bock, V., de Rezende, T. R., Walch, S. G., & Sproll, C. (2020). Are side effects of cannabidiol (CBD) products caused by tetrahydrocannabinol (THC) contamination? F1000Research, 8. https://doi.org/10.12688/f1000research.19931.1spa
dc.relation.referencesLavoie, J. M., & Beauchet, R. (2012). Biorefinery of Cannabis sativa using one- and two-step steam treatments for the production of high quality fibres. Industrial Crops and Products, 37(1), 275–283. https://doi.org/10.1016/j.indcrop.2011.11.016spa
dc.relation.referencesLeghissa, A., Hildenbrand, Z. L., Foss, F. W., & Schug, K. A. (2018). Determination of cannabinoids from a surrogate hops matrix using multiple reaction monitoring gas chromatography with triple quadrupole mass spectrometry. Journal of Separation Science, 41(2), 459–468. https://doi.org/10.1002/jssc.201700946spa
dc.relation.referencesLeydesdorff, L., & Welbers, K. (2011). The semantic mapping of words and co-words in contexts. Journal of Informetrics, 5(3), 469–475. https://doi.org/10.1016/J.JOI.2011.01.008spa
dc.relation.referencesLi, S.-Y., Stuart, J. D., Li, Y., & Parnas, R. S. (2010). The feasibility of converting Cannabis sativa L. oil into biodiesel. Bioresource Technology, 101(21), 8457–8460. https://doi.org/10.1016/j.biortech.2010.05.064spa
dc.relation.referencesLiu, R., Liang, L., Li, F., Wu, M., Chen, K., Ma, J., Jiang, M., Wei, P., & Ouyang, P. (2013). Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresource Technology, 149, 84–91. https://doi.org/10.1016/J.BIORTECH.2013.09.052spa
dc.relation.referencesMalomo, S. A., & Aluko, R. E. (2015). Conversion of a low protein hemp seed meal into a functional protein concentrate through enzymatic digestion of fibre coupled with membrane ultrafiltration. Innovative Food Science and Emerging Technologies, 31, 151–159. https://doi.org/10.1016/j.ifset.2015.08.004spa
dc.relation.referencesManaia, J. P., Manaia, A. T., & Rodriges, L. (2019). Industrial Hemp Fibers: An Overview. Fibers, 7(12), 106. https://doi.org/10.3390/fib7120106spa
dc.relation.referencesManevski, K., Lærke, P. E., Olesen, J. E., & Jørgensen, U. (2018). Nitrogen balances of innovative cropping systems for feedstock production to future biorefineries. Science of the Total Environment, 633, 372–390. https://doi.org/10.1016/j.scitotenv.2018.03.155spa
dc.relation.referencesManosalva Barrera, J. C., Dávila, J. A., & Quintero, J. A. (2020). Estudio holístico de la producción de papel a partir de cáñamo industrial en el contexto colombiano. Revista Mutis, 10(2), 51–69. https://doi.org/10.21789/22561498.1721spa
dc.relation.referencesMarchini, M., Charvoz, C., Dujourdy, L., Baldovini, N., & Filippi, J.-J. (2014). Multidimensional analysis of cannabis volatile constituents: Identification of 5,5-dimethyl-1-vinylbicyclo[2.1.1]hexane as a volatile marker of hashish, the resin of Cannabis sativa L. Journal of Chromatography A, 1370, 200–215. https://doi.org/10.1016/j.chroma.2014.10.045spa
dc.relation.referencesMartínez Cifuentes, M. C., Morales Moreno, J. S., Rincón Villamizar, J. C., & Riveros Marriaga, L. E. (2021). Propuesta para el aprovechamiento de residuos vegetales en el proceso de cosecha de cannabis sativa en la empresa Aurora Medicinal.spa
dc.relation.referencesMazian, B., Bergeret, A., Benezet, J.-C., & Malhautier, L. (2018). Influence of field retting duration on the biochemical, microstructural, thermal and mechanical properties of hemp fibres harvested at the beginning of flowering. Industrial Crops and Products, 116, 170–181. https://doi.org/10.1016/j.indcrop.2018.02.062spa
dc.relation.referencesMoscariello, C., Matassa, S., Esposito, G., & Papirio, S. (2021). From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resources, Conservation and Recycling, 175, 105864. https://doi.org/10.1016/J.RESCONREC.2021.105864spa
dc.relation.referencesNahler, G., Grotenhermen, F., Zuardi, A. W., & Crippa, J. A. S. (2017). A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans. Cannabis and Cannabinoid Research, 2(1), 81–86. https://doi.org/10.1089/can.2017.0009spa
dc.relation.referencesN-Amatic Systems. (2014). BIOMASA.spa
dc.relation.referencesNges, I. A., Escobar, F., Fu, X., & Björnsson, L. (2012). Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production. Waste Management, 32(1), 53–59. https://doi.org/10.1016/j.wasman.2011.09.009spa
dc.relation.referencesPakarinen, A., Maijala, P., Jaakkola, S., Stoddard, F., Kymäläinen, M., & Viikari, L. (2011). Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnology for Biofuels, 4. https://doi.org/10.1186/1754-6834-4-20spa
dc.relation.referencesPakarinen, A., Maijala, P., Stoddard, F. L., Santanen, A., Tuomainen, P., Kymäläinen, M., & Viikari, L. (2011). Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production. Biomass and Bioenergy, 35(7), 3071–3078. https://doi.org/10.1016/j.biombioe.2011.04.022spa
dc.relation.referencesPakarinen, A., Zhang, J., Brock, T., Maijala, P., & Viikari, L. (2012). Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresource Technology, 107, 275–281. https://doi.org/10.1016/j.biortech.2011.12.101spa
dc.relation.referencesPal, L., & Lucia, L. (2019). Renaissance of industrial hemp: A miracle crop for a multitude of products. BioResources, 14(2), 2460–2464.spa
dc.relation.referencesPapirio, S., Matassa, S., Pirozzi, F., & Esposito, G. (2020). Anaerobic Co-digestion of cheese whey and industrial hemp residues opens new perspectives for the valorization of agri-food waste. Energies, 13(11). https://doi.org/10.3390/en13112820spa
dc.relation.referencesParsons, J. L., Martin, S. L., James, T., Golenia, G., Boudko, E. A., & Hepworth, S. R. (2019). Polyploidization for the genetic improvement of cannabis sativa. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00476spa
dc.relation.referencesPassport Euromonitor. (2019). Cannabis in beauty and personal care: prospects, opportunities and challenges.spa
dc.relation.referencesPeters, H., & Nahas, G. G. (1999). A Brief History of Four Millennia (B.C. 2000—A.D. 1974). In G. G. Nahas, K. M. Sutin, D. Harvey, S. Agurell, N. Pace, & R. Cancro (Eds.), Marihuana and Medicine (pp. 3–7). Humana Press. https://doi.org/10.1007/978-1-59259-710-9_1spa
dc.relation.referencesPino Herrera, O. F. (2019). Estudio de pre factibilidad para la creación de una empresa productora y procesadora de fibra de cáñamo industrial en la provincia de pichincha para la exportación al mercado alemán en el periodo 2019-2029. Pontificia Universidad Católica del ecuadorfacultad de comunicación, lingüística y literaturaescuela multilingue de negocios y relaciones internacionales.spa
dc.relation.referencesPlacet, V., Day, A., & Beaugrand, J. (2017). The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. Journal of Materials Science, 52(10), 5759–5777. https://doi.org/10.1007/s10853-017-0811-5spa
dc.relation.referencesPojić, M., Mišan, A., Sakač, M., HadnaCrossed D Signev, T. D., Šarić, B., Milovanović, I., & HadnaCrossed D Signev, M. (2014). Characterization of byproducts originating from hemp oil processing. Journal of Agricultural and Food Chemistry, 62(51), 12346–12442. https://doi.org/10.1021/jf5044426spa
dc.relation.referencesPrade, T., Svensson, S.-E., & Mattsson, J. E. (2012). Energy balances for biogas and solid biofuel production from industrial hemp. Biomass and Bioenergy, 40, 36–52. https://doi.org/10.1016/j.biombioe.2012.01.045spa
dc.relation.referencesPresidencia de la República de Colombia. (2017). Decreto 613 de 2017.spa
dc.relation.referencesRéquilé, S., Mazian, B., Grégoire, M., Musio, S., Gautreau, M., Nuez, L., Day, A., Thiébeau, P., Philippe, F., Chabbert, B., Bourmaud, A., & Ouagne, P. (2021). Exploring the dew retting feasibility of hemp in very contrasting European environments: Influence on the tensile mechanical properties of fibres and composites. Industrial Crops and Products, 164. https://doi.org/10.1016/j.indcrop.2021.113337spa
dc.relation.referencesSair, S., Oushabi, A., Kammouni, A., Tanane, O., Abboud, Y., Oudrhiri Hassani, F., Laachachi, A., & el Bouari, A. (2017). Effect of surface modification on morphological, mechanical and thermal conductivity of hemp fiber: Characterization of the interface of hemp -Polyurethane composite. Case Studies in Thermal Engineering, 10, 550–559. https://doi.org/10.1016/j.csite.2017.10.012spa
dc.relation.referencesSalami, A., Heikkinen, J., Tomppo, L., Hyttinen, M., Kekäläinen, T., Jänis, J., Vepsäläinen, J., & Lappalainen, R. (2021). A Comparative Study of Pyrolysis Liquids by Slow Pyrolysis of Industrial Hemp Leaves, Hurds and Roots. Molecules, 26(11), 3167. https://doi.org/10.3390/molecules26113167spa
dc.relation.referencesSamuel, O. D., Boye, T. E., & Enweremadu, C. C. (2020). Financial and parametric study of biodiesel production from hemp and tobacco seed oils in modified fruit blender and prediction models of their fuel properties with diesel fuel. Bioresource Technology Reports, 12. https://doi.org/10.1016/j.biteb.2020.100599spa
dc.relation.referencesSipos, B., Kreuger, E., Svensson, S.-E., Réczey, K., Björnsson, L., & Zacchi, G. (2010). Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass and Bioenergy, 34(12), 1721–1731. https://doi.org/10.1016/j.biombioe.2010.07.003spa
dc.relation.referencesSolarte-Toro, J. C., & Cardona Alzate, C. A. (2021). Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspects, challenges and perspectives. Bioresource Technology, 340, 125626. https://doi.org/10.1016/J.BIORTECH.2021.125626spa
dc.relation.referencesSong, Y., Matsumoto, K., Yamada, M., Gohda, A., Brigham, C. J., Sinskey, A. J., & Taguchi, S. (2012). Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Applied Microbiology and Biotechnology, 93(5), 1917–1925. https://doi.org/10.1007/s00253-011-3718-0spa
dc.relation.referencesStamboulis, A., Baillie, C. A., & Peijs, T. (2001). Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing, 32(8), 1105–1115. https://doi.org/10.1016/S1359-835X(01)00032-Xspa
dc.relation.referencesStruik, P. C., Amaducci, S., Bullard, M. J., Stutterheim, N. C., Venturi, G., & Cromack, H. T. H. (2000). Agronomy of fibre hemp (Cannahis satira L.) in Europe. Industrial Crops and Products, 11(2–3), 107–118. https://doi.org/10.1016/S0926-6690(99)00048-5spa
dc.relation.referencesTrivaudey, F., Placet, V., Guicheret-Retel, V., & Boubakar, M. L. (2015). Nonlinear tensile behaviour of elementary hemp fibres. Part II: Modelling using an anisotropic viscoelastic constitutive law in a material rotating frame. Composites Part A: Applied Science and Manufacturing, 68, 346–355. https://doi.org/10.1016/j.compositesa.2014.10.020spa
dc.relation.referencesValizadehderakhshan, M., Shahbazi, A., Kazem-Rostami, M., Todd, M. S., Bhowmik, A., & Wang, L. (2021). Extraction of Cannabinoids from Cannabis sativa L. (Hemp)—Review. Agriculture, 11(5), 384. https://doi.org/10.3390/agriculture11050384spa
dc.relation.referencesvan Eck, N. J., & Waltman, L. (2022). VOSviewer (1.6.18). Centre for Science and Technology Studies, Leiden University. https://www.vosviewer.com/spa
dc.relation.referencesVodolazska, D., & Lauridsen, C. (2020). Effects of dietary hemp seed oil to sows on fatty acid profiles, nutritional and immune status of piglets. Journal of Animal Science and Biotechnology, 11(1). https://doi.org/10.1186/s40104-020-0429-3spa
dc.relation.referencesWang, D., Li, Q., Yang, M., Zhang, Y., Su, Z., & Xing, J. (2011). Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation. Process Biochemistry, 46(1), 365–371. https://doi.org/10.1016/J.PROCBIO.2010.09.012spa
dc.relation.referencesWang, M., Han, J., Dunn, J. B., Cai, H., & Elgowainy, A. (2015). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. In Efficiency and Sustainability in Biofuel Production: Environmental and Land-Use Research (pp. 249–280). Apple Academic Press. https://doi.org/10.1088/1748-9326/7/4/045905spa
dc.relation.referencesXue, S.-J., Chi, Z., Zhang, Y., Li, Y.-F., Liu, G.-L., Jiang, H., Hu, Z., & Chi, Z.-M. (2018). Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Critical Reviews in Biotechnology, 38(7), 1049–1060. https://doi.org/10.1080/07388551.2018.1428167spa
dc.relation.referencesZhao, J., Xu, Y., Wang, W., Griffin, J., & Wang, D. (2020). Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresource Technology, 309. https://doi.org/10.1016/j.biortech.2020.123383spa
dc.relation.referencesZheng, P., Fang, L., Xu, Y., Dong, J. J., Ni, Y., & Sun, Z. H. (2010). Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresource Technology, 101(20), 7889–7894. https://doi.org/10.1016/J.BIORTECH.2010.05.016spa
dc.relation.referencesZirpel, B., Degenhardt, F., Zammarelli, C., Wibberg, D., Kalinowski, J., Stehle, F., & Kayser, O. (2018). Optimization of Δ9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. Journal of Biotechnology, 272–273, 40–47. https://doi.org/10.1016/j.jbiotec.2018.03.008spa
dc.relation.referencesZirpel, B., Kayser, O., & Stehle, F. (2018). Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativa L. Journal of Biotechnology, 284, 17–26. https://doi.org/10.1016/j.jbiotec.2018.07.03spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.localMagister en Ciencias y Tecnologías Ambientalesspa
dc.subject.keywordCannabis sativaspa
dc.subject.keywordCáñamospa
dc.subject.keywordHempspa
dc.subject.keywordValorisationspa
dc.subject.keywordBioconversionspa
dc.subject.lembendorfinasspa
dc.subject.lembestudios métricos de la informaciónspa
dc.subject.lembcienciometríaspa
dc.subject.lembopioidesspa
dc.subject.proposalCannabis sativaspa
dc.subject.proposalCáñamospa
dc.subject.proposalHempspa
dc.subject.proposalValorisationspa
dc.subject.proposalBioconversionspa
dc.titleEstudio del potencial de aprovechamiento de la biomasa residual de Cannabis sativa y cáñamo. Análisis cienciométrico y minería de texto.spa
dc.typemaster thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2023MendezMaritza.pdf
Tamaño:
567.68 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2023MendezMaritza1.pdf
Tamaño:
209.47 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación de facultad
Thumbnail USTA
Nombre:
2023MendezMaritza2.pdf
Tamaño:
456.98 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: