Uso de Drones en la Agricultura de Precisión

dc.contributor.advisorVela Beltrán, Diego Alejandro
dc.contributor.authorOtálora Moreno, William David
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001977029Spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=o-A8ASAAAAAJSpa
dc.contributor.orcidhttps://orcid.org/0009-0003-1809-4033Spa
dc.coverage.campusCRAI-USTA Tunjaspa
dc.date.accessioned2024-06-19T19:41:05Z
dc.date.available2024-06-19T19:41:05Z
dc.date.issued2024
dc.descriptionEl artículo investiga el creciente papel de los drones en la agricultura de precisión, destacando sus aplicaciones y avances tecnológicos. Los drones permiten la monitorización detallada y eficiente de cultivos, mejorando la gestión agrícola. Se discuten desafíos técnicos como la integración de datos y la interoperabilidad del software, así como la necesidad de colaboración entre investigadores, empresas y agricultores para superar estos obstáculos. También se subraya la importancia de abordar cuestiones éticas y legales para una implementación responsable de esta tecnología.spa
dc.description.abstractThe article investigates the growing role of drones in precision agriculture, highlighting their applications and technological advancements. Drones enable detailed and efficient crop monitoring, improving agricultural management. Technical challenges such as data integration and software interoperability are discussed, along with the need for collaboration among researchers, companies, and farmers to overcome these obstacles. The importance of addressing ethical and legal issues for the responsible implementation of this technology is also emphasized.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Informáticospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationOtálora, W. (2024). Uso de Drones en la Agricultura de Precisión- [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/55664
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería de Sistemasspa
dc.publisher.programIngeniería Informáticaspa
dc.relation.references“Boletin+Introducción+a+la+agricultura+de+precisión+ganadería+de+leche+ener o”.spa
dc.relation.referencesE. Pino V., “Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología,” Idesia (Arica), no. ahead, pp. 0–0, 2019, doi: 10.4067/s0718- 34292019005000402.spa
dc.relation.referencesP. Fernández and P. Díaz, “Investigación: Investigación cuantitativa y cualitativa Investigación cuantitativa y cualitativa.” [Online]. Available: www.fisterra.comspa
dc.relation.referencesH. Análisis Cualitativo Héctor Cárcamo Vásquez, “CINTA DE MOEBIO.”spa
dc.relation.referencesY. Liu et al., “Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements,” Comput Electron Agric, vol. 213, p. 108229, Oct. 2023, doi: 10.1016/J.COMPAG.2023.108229.spa
dc.relation.referencesS. H. Gurmani, H. Garg, R. M. Zulqarnain, and I. Siddique, “Selection of Unmanned Aerial Vehicles for Precision Agriculture Using Interval-Valued q-Rung Orthopair Fuzzy Information based TOPSIS Method,” International Journal of Fuzzy Systems, vol. 25, no. 8, pp. 2939–2953, Nov. 2023, doi: 10.1007/s40815- 023-01568-0.spa
dc.relation.referencesY. Zhang et al., “CURI-YOLOv7: A Lightweight YOLOv7tiny Target Detector for Citrus Trees from UAV Remote Sensing Imagery Based on Embedded Device,” Remote Sens (Basel), vol. 15, no. 19, Oct. 2023, doi: 10.3390/rs15194647.spa
dc.relation.referencesH. Huang, K. Li, W. Ni, H. Kurunathan, and E. Hossain, “Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey”, doi: 10.13140/RG.2.2.10212.65928.spa
dc.relation.referencesP. Marques, L. Pádua, J. J. Sousa, and A. Fernandes-Silva, “Assessing the Water Status and Leaf Pigment Content of Olive Trees: Evaluating the Potential and Feasibility of Unmanned Aerial Vehicle Multispectral and Thermal Data for Estimation Purposes,” Remote Sens (Basel), vol. 15, no. 19, Oct. 2023, doi: 10.3390/rs15194777.spa
dc.relation.referencesF. Ecer, İ. Y. Ögel, R. Krishankumar, and E. B. Tirkolaee, “The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era,” Artif Intell Rev, vol. 56, no. 11, pp. 13373–13406, Nov. 2023, doi: 10.1007/s10462-023-10476-6.spa
dc.relation.referencesW. Zhai, C. Li, Q. Cheng, F. Ding, and Z. Chen, “Exploring Multisource Feature Fusion and Stacking Ensemble Learning for Accurate Estimation of Maize Chlorophyll Content Using Unmanned Aerial Vehicle Remote Sensing,” Remote Sens (Basel), vol. 15, no. 13, Jul. 2023, doi: 10.3390/rs15133454.spa
dc.relation.referencesA. V. Turukmane, M. Pradeepa, K. S. S. Reddy, R. Suganthi, Y. M. Riyazuddin, and V. V. S. Tallapragada, “Smart farming using cloud-based Iot data analytics,” Measurement: Sensors, vol. 27, p. 100806, Jun. 2023, doi: 10.1016/J.MEASEN.2023.100806.spa
dc.relation.referencesM. S. Mahmud, L. He, P. Heinemann, D. Choi, and H. Zhu, “Unmanned aerial vehicle based tree canopy characteristics measurement for precision spray applications,” Smart Agricultural Technology, vol. 4, p. 100153, Aug. 2023, doi: 10.1016/J.ATECH.2022.100153.spa
dc.relation.referencesÉ. A. S. Moriya, N. N. Imai, A. M. G. Tommaselli, E. Honkavaara, and D. L. Rosalen, “Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study,” Agronomy, vol. 13, no. 6, Jun. 2023, doi: 10.3390/agronomy13061542.spa
dc.relation.referencesB. Xu, J. Fan, J. Chao, N. Arsenijevic, R. Werle, and Z. Zhang, “Instance segmentation method for weed detection using UAV imagery in soybean fields,” Comput Electron Agric, vol. 211, p. 107994, Aug. 2023, doi: 10.1016/J.COMPAG.2023.107994.spa
dc.relation.referencesL. Sánchez-Fernández, M. Barrera, J. Martínez-Guanter, and M. Pérez-Ruiz, “Drift reduction in orchards through the use of an autonomous UAV system,” Comput Electron Agric, vol. 211, p. 107981, Aug. 2023, doi: 10.1016/J.COMPAG.2023.107981.spa
dc.relation.referencesY. Wang et al., “Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral–Textural Analysis,” Agronomy, vol. 13, no. 6, Jun. 2023, doi: 10.3390/agronomy13061541.spa
dc.relation.referencesC. Lin, C. Guo, W. Du, J. Deng, L. Wang, and G. Wu, “Maximizing Energy Efficiency of Period-Area Coverage with UAVs for Wireless Rechargeable Sensor Networks.”spa
dc.relation.referencesC. Munghemezulu, Z. Mashaba-Munghemezulu, P. E. Ratshiedana, E. Economon, G. Chirima, and S. Sibanda, “Unmanned Aerial Vehicle (UAV) and Spectral Datasets in South Africa for Precision Agriculture,” Data (Basel), vol. 8, no. 6, Jun. 2023, doi: 10.3390/data8060098.spa
dc.relation.referencesS. Sapkota and D. R. Paudyal, “Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region,” Sensors, vol. 23, no. 12, Jun. 2023, doi: 10.3390/s23125432.spa
dc.relation.referencesH. Pu et al., “Tassel-YOLO: A New High-Precision and Real-Time Method for Maize Tassel Detection and Counting Based on UAV Aerial Images,” Drones, vol. 7, no. 8, Aug. 2023, doi: 10.3390/drones7080492.spa
dc.relation.referencesW. Zhai et al., “Enhancing Wheat Above-Ground Biomass Estimation Using UAV RGB Images and Machine Learning: Multi-Feature Combinations, Flight Height, and Algorithm Implications,” Remote Sens (Basel), vol. 15, no. 14, Jul. 2023, doi: 10.3390/rs15143653.spa
dc.relation.referencesI. Blekanov, A. Molin, D. Zhang, E. Mitrofanov, O. Mitrofanova, and Y. Li, “Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches,” Comput Electron Agric, vol. 212, p. 108047, Sep. 2023, doi: 10.1016/J.COMPAG.2023.108047.spa
dc.relation.referencesF. L. Macedo et al., “Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island,” Agriculture (Switzerland), vol. 13, no. 6, Jun. 2023, doi: 10.3390/agriculture13061115.spa
dc.relation.referencesV. Amputu et al., “Unmanned aerial systems accurately map rangeland condition indicators in a dryland savannah,” Ecol Inform, vol. 75, p. 102007, Jul. 2023, doi: 10.1016/J.ECOINF.2023.102007.spa
dc.relation.referencesC. Yan, Z. Li, Z. Zhang, Y. Sun, Y. Wang, and Q. Xin, “High-resolution mapping of paddy rice fields from unmanned airborne vehicle images using enhancedTransUnet,” Comput Electron Agric, vol. 210, p. 107867, Jul. 2023, doi: 10.1016/J.COMPAG.2023.107867.spa
dc.relation.referencesB. Xu et al., “Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements,” Pest Manag Sci, vol. 79, no. 7, pp. 2591–2602, Jul. 2023, doi: 10.1002/ps.7443.spa
dc.relation.referencesZ. qi LIAO et al., “A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery,” J Integr Agric, vol. 22, no. 7, pp. 2248–2270, Jul. 2023, doi: 10.1016/J.JIA.2023.02.022.spa
dc.relation.referencesP. K. S and N. K. K, “Drone-based apple detection: Finding the depth of apples using YOLOv7 architecture with multi-head attention mechanism,” Smart Agricultural Technology, vol. 5, p. 100311, Oct. 2023, doi: 10.1016/J.ATECH.2023.100311.spa
dc.relation.referencesW. Sun, B. Fu, and Z. Zhang, “Maize Nitrogen Grading Estimation Method Based on UAV Images and an Improved Shufflenet Network,” Agronomy, vol. 13, no. 8, Aug. 2023, doi: 10.3390/agronomy13081974.spa
dc.relation.referencesS. M. Wang et al., “Pixel-class prediction for nitrogen content of tea plants based on unmanned aerial vehicle images using machine learning and deep learning,” Expert Syst Appl, vol. 227, p. 120351, Oct. 2023, doi: 10.1016/J.ESWA.2023.120351.spa
dc.relation.referencesX. Quan, Q. Guo, J. Ma, and R. Doluschitz, “The economic effects of unmanned aerial vehicles in pesticide application: evidence from Chinese grain farmers,” Precis Agric, vol. 24, no. 5, pp. 1965–1981, Oct. 2023, doi: 10.1007/s11119-023- 10025-9.spa
dc.relation.referencesY. Fan et al., “Using an optimized texture index to monitor the nitrogen content of potato plants over multiple growth stages,” Comput Electron Agric, vol. 212, p. 108147, Sep. 2023, doi: 10.1016/J.COMPAG.2023.108147.spa
dc.relation.referencesS. Xiao et al., “High-throughput calculation of organ-scale traits with reconstructed accurate 3D canopy structures using a UAV RGB camera with an advanced cross-circling oblique route,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 201, pp. 104–122, Jul. 2023, doi: 10.1016/J.ISPRSJPRS.2023.05.016.spa
dc.relation.referencesA. Escolà et al., “Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 1: Methodology and comparison in vineyards,” Comput Electron Agric, vol. 212, p. 108109, Sep. 2023, doi: 10.1016/J.COMPAG.2023.108109.spa
dc.relation.referencesA. Guo et al., “Inversion of maize leaf area index from UAV hyperspectral and multispectral imagery,” Comput Electron Agric, vol. 212, p. 108020, Sep. 2023, doi: 10.1016/J.COMPAG.2023.108020.spa
dc.relation.referencesH. Puppala, P. R. T. Peddinti, J. P. Tamvada, J. Ahuja, and B. Kim, “Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India,” Technol Soc, vol. 74, p. 102335, Aug. 2023, doi: 10.1016/J.TECHSOC.2023.102335.spa
dc.relation.referencesZ. Li, Z. Chen, Q. Cheng, S. Fei, and X. Zhou, “Deep Learning Models Outperform Generalized Machine Learning Models in Predicting Winter Wheat Yield Based on Multispectral Data from Drones,” Drones, vol. 7, no. 8, Aug. 2023, doi: 10.3390/drones7080505spa
dc.relation.referencesJ. Xiao et al., “Enhancing assessment of corn growth performance using unmanned aerial vehicles (UAVs) and deep learning,” Measurement, vol. 214, p. 112764, Jun. 2023, doi: 10.1016/J.MEASUREMENT.2023.112764.spa
dc.relation.referencesP. Battistoni et al., “A Cyber-Physical System for Wildfire Detection and Firefighting,” Future Internet, vol. 15, no. 7, Jul. 2023, doi: 10.3390/fi15070237.spa
dc.relation.referencesM. Mamalis, E. Kalampokis, I. Kalfas, and K. Tarabanis, “Deep Learning for Detecting Verticillium Fungus in Olive Trees: Using YOLO in UAV Imagery,” Algorithms, vol. 16, no. 7, Jul. 2023, doi: 10.3390/a16070343.spa
dc.relation.referencesX. Bai et al., “RPNet: Rice plant counting after tillering stage based on plant attention and multiple supervision network,” Crop J, vol. 11, no. 5, pp. 1586–1594, Oct. 2023, doi: 10.1016/J.CJ.2023.04.005.spa
dc.relation.referencesZ. Longfei et al., “Improved Yield Prediction of Ratoon Rice Using Unmanned Aerial Vehicle-Based Multi-Temporal Feature Method,” Rice Sci, vol. 30, no. 3, pp. 247–256, May 2023, doi: 10.1016/J.RSCI.2023.03.008.spa
dc.relation.referencesM. S. Mia et al., “Multimodal Deep Learning for Rice Yield Prediction Using UAVBased Multispectral Imagery and Weather Data,” Remote Sens (Basel), vol. 15, no. 10, May 2023, doi: 10.3390/rs15102511.spa
dc.relation.referencesA. Tschand, “Semi-supervised machine learning analysis of crop color for autonomous irrigation,” Smart Agricultural Technology, vol. 3, p. 100116, Feb. 2023, doi: 10.1016/J.ATECH.2022.100116.spa
dc.relation.referencesE. K. Raptis et al., “End-to-end Precision Agriculture UAV-Based Functionalities Tailored to Field Characteristics,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 107, no. 2, Feb. 2023, doi: 10.1007/s10846-022- 01761-7.spa
dc.relation.referencesA. Khanna and S. Kaur, “An empirical analysis on adoption of precision agricultural techniques among farmers of Punjab for efficient land administration,” Land use policy, vol. 126, p. 106533, Mar. 2023, doi: 10.1016/J.LANDUSEPOL.2022.106533.spa
dc.relation.referencesC. McCarthy et al., “Can Drones Help Smallholder Farmers Improve Agriculture Efficiencies and Reduce Food Insecurity in Sub-Saharan Africa? Local Perceptions from Malawi,” Agriculture (Switzerland), vol. 13, no. 5, May 2023, doi: 10.3390/agriculture13051075.spa
dc.relation.referencesA. Maulit, A. Nugumanova, K. Apayev, Y. Baiburin, and M. Sutula, “A Multispectral UAV Imagery Dataset of Wheat, Soybean and Barley Crops in East Kazakhstan,” Data (Basel), vol. 8, no. 5, May 2023, doi: 10.3390/data8050088.spa
dc.relation.referencesA. Gkillas, D. Kosmopoulos, and K. Berberidis, “Cost-efficient coupled learning methods for recovering near-infrared information from RGB signals: Application in precision agriculture,” Comput Electron Agric, vol. 209, p. 107833, Jun. 2023, doi: 10.1016/J.COMPAG.2023.107833.spa
dc.relation.referencesE. C. Nnadozie, O. N. Iloanusi, O. A. Ani, and K. Yu, “Detecting Cassava Plants under Different Field Conditions Using UAV-Based RGB Images and Deep Learning Models,” Remote Sens (Basel), vol. 15, no. 9, May 2023, doi: 10.3390/rs15092322.spa
dc.relation.referencesK. Jindo et al., “Unmanned Aerial Vehicle (UAV) for Detection and Prediction of Damage Caused by Potato Cyst Nematode G. pallida on Selected Potato Cultivars,” Remote Sens (Basel), vol. 15, no. 5, Mar. 2023, doi: 10.3390/rs15051429.spa
dc.relation.referencesL. Holtorf, I. Titov, F. Daschner, and M. Gerken, “UAV-Based Wireless Data Collection from Underground Sensor Nodes for Precision Agriculture,” AgriEngineering, vol. 5, no. 1, pp. 338–354, Mar. 2023, doi: 10.3390/agriengineering5010022.spa
dc.relation.referencesZ. Li, X. Zhou, Q. Cheng, S. Fei, and Z. Chen, “A Machine-Learning Model Based on the Fusion of Spectral and Textural Features from UAV Multi-Sensors to Analyse the Total Nitrogen Content in Winter Wheat,” Remote Sens (Basel), vol. 15, no. 8, Apr. 2023, doi: 10.3390/rs15082152.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordDronesspa
dc.subject.keywordAgriculturespa
dc.subject.keywordPrecision Agriculturespa
dc.subject.keywordUnmanned Aerial Vehiclesspa
dc.subject.keywordArtificial Intelligencespa
dc.subject.keywordBig Dataspa
dc.subject.keywordMachine Learningspa
dc.subject.keywordDeep Learningspa
dc.subject.proposalDronesspa
dc.subject.proposalAgriculturaspa
dc.subject.proposalAgricultura de Precisiónspa
dc.subject.proposalUAVspa
dc.subject.proposalVehiculos Aereos no Tripuladosspa
dc.subject.proposalInteligencia Artificialspa
dc.subject.proposalBig Dataspa
dc.subject.proposalMachine Learningspa
dc.subject.proposalDeep Learningspa
dc.titleUso de Drones en la Agricultura de Precisiónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2024williamotalora
Tamaño:
540.63 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartaderechosdeautor
Tamaño:
466.32 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartaaprobaciónfacultad
Tamaño:
280.62 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: