Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
dc.contributor.advisor | Merchán Arenas, Diego Rolando | |
dc.contributor.author | Villabona Delgado, Cindy Carolina | |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2019-05-10T16:52:35Z | |
dc.date.available | 2019-05-10T16:52:35Z | |
dc.date.issued | 2019-05-02 | |
dc.description | La recuperación de aceite se mejoró utilizando la amina terciaria, N, N-dimetilciclohexilamina (DMCHA), un solvente conmutable potente y promisorio, en condiciones simuladas similares a las reservas de petróleo crudo colombiano. En primer lugar, el crudo colombiano (CCO) y el suelo se caracterizaron por completo. Posteriormente, se obtuvo un sistema de crudo-roca envejecida para usar DMCHA que dio una extracción de crudo de petróleo del 80% en nuestros estudios preliminares. Por lo tanto, se usó un empaque de arena (suelo-caolín, 95: 5) saturado con CCO para simular las condiciones, en las cuales el DMCHA podría recuperar el aceite. Después del proceso de recuperación secundario, se obtuvo 15.4–33.8% del aceite original en sitio (OOIP). Después de la inyección de DMCHA, el rendimiento de recuperación aumentó a 87-97% de OOIP. Finalmente, 54-60% de DMCHA fue recuperado y reinyectado sin afectar su potencial en las condiciones simuladas. | spa |
dc.description.abstract | Oil recovery was improved using the tertiary amine, N,N-dimethylcyclohexylamine (DMCHA), a powerful and promissory switchable solvent, in simulated conditions similar to the Colombian crude oil reserves. Firstly, the Colombian crude oil (CCO) and the soil were characterized completely. Afterwards, an aged crude-rock system was obtained to use DMCHA that gave an oil crude extraction of 80% in our preliminary studies. Thus, a sand-pack column (soil-kaolin, 95 : 5) frame saturated with CCO was used to simulate the conditions, in which DMCHA could recover the oil. After the secondary recovery process, 15.4–33.8% of original oil in place (OOIP) is obtained. Following the injection of DMCHA, the recovery yield rose to 87–97% of OOIP. Finally, 54–60% of DMCHA was recovered and reinjected without affecting its potential in the simulated conditions. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias y Tecnologías Ambientales | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Merchán Arenas, D. R. y Villabona Delgado, C. C. (2019). Chemical-enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombian crude oil. International Journal of Chemical Engineering, 2019, 1-10. DOI: https://doi.org/10.1155/2019/5241419 | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/16618 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Química Ambiental | spa |
dc.publisher.program | Maestría Ciencias y Tecnologías Ambientales | spa |
dc.relation.references | BP Statistical Review of World Energy, 67th edition, 2018, http://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf. | spa |
dc.relation.references | IEA, World Energy Outlook 2014, International Energy Agency, Paris, France, 2014. | spa |
dc.relation.references | A. H. Alagorni, Z. B. Yaacob, and A. H. Nour, “An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection,” International Journal of Environmental Science and Development, vol. 6, no. 9, pp. 693–701, 2015 | spa |
dc.relation.references | J. J. Sheng, Introduction, in Modern Chemical Enhanced Oil Recovery, Elsevier, Amsterdam, Netherlands, 2011. | spa |
dc.relation.references | V. P. Dimri, R. Srivastava, and N. Vedanti, “Chapter 6. Fluid flow and recovery,” in Fractal Models in Exploration Geophysics, vol. 41, pp. 119–147, Elsevier Ltd., Amsterdam, Netherlands, 2012. | spa |
dc.relation.references | W. B. Gogarty, “Mobility control with polymer solutions,” Society of Petroleum Engineers Journal, vol. 7, no. 2, pp. 161–173, 1967. | spa |
dc.relation.references | H. J. Hill, J. Reisberg, and G. L. Stegemeier, “Aqueous surfactant systems for oil recovery,” Journal of Petroleum Technology, vol. 25, no. 2, pp. 186–194, 1973. | spa |
dc.relation.references | M. S. Kamal, A. S. Sultan, U. A. Al-Mubaiyedh, and I. A. Hussein, “Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems,” Polymer Reviews, vol. 55, no. 3, pp. 491–503, 2015 | spa |
dc.relation.references | M. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on surfactant flooding: phase review on surfactant flooding: phase behavior, retention, IFT and field applications,” Energy & Fuels, vol. 31, no. 8, pp. 7701–7720, 2017 | spa |
dc.relation.references | P. Yang, Z.-A. Li, B. Xia, Y.-J. Yuan, Q.-T. Huang, and W.-L. Liu, “Comprehensive review of alkaline-surfactant-polymer (ASP)-enhanced oil recovery (EOR),” in Proceedings of the International Field Exploration and Development Conference, 2017, Springer, Chengdu, China, September 2017. | spa |
dc.relation.references | S. Ko and C. Huh, “Use of nanoparticles for oil production applications,” Journal of Petroleum Science and Engineering, vol. 172, pp. 97–114, 2019. | spa |
dc.relation.references | M. S. Bin Dahbag, M. E. Hossain, and A. A. Alquraishi, “Efficiency of ionic liquids as an enhanced oil recovery chemical: simulation approach,” Energy & Fuels, vol. 30, no. 11, pp. 9260–9265, 2016. | spa |
dc.relation.references | D. G. De Almeida, R. D. C. F. Soares Da Silva, J. M. Luna et al., “Biosurfactants: promising molecules for petroleum biotechnology advances,” Frontiers in Microbiology, vol. 7, pp. 1–14, 2016. | spa |
dc.relation.references | E. O. Ansah, Y. Sugai, R. Nguele, and K. Sasaki, “Integrated microbial enhanced oil recovery (MEOR) simulation: main influencing parameters and uncertainty assessment,” Journal of Petroleum Science and Engineering, vol. 171, pp. 784–793, 2018 | spa |
dc.relation.references | I. Al-Weheibi, R. Al-Hajri, Y. Al-Wahaibi, B. Jibril, and A. Mohsenzadeh, “Oil recovery enhancement in middle east heavy oil field using malonic acid based deep eutectic solvent,” in Proceedings of the SPE Middle East Oil and Gas Show and Conference (MEOS 2015), pp. 780–792, Manama, Bahrain, January 2015. | spa |
dc.relation.references | M. M. Sharma, T. F. Yen, G. V. Chilingarian, and E. C. Donaldson, “Chapter 7. Some chemical and physical problems in enhanced oil recovery operations,” in Developments in Petroleum Science, Part A, E. C. Donaldson, Ed., pp. 223–249, Elsevier Science, Amsterdam, Netherlands, 1985. | spa |
dc.relation.references | K. Carruthers, Environmental Impacts of CO2-EOR. The Offshore UK Context, Scottish Carbon Capture & Storage, UK, 2014 | spa |
dc.relation.references | P. R. Hart, B. J. Stefan, P. Srivastava, and J. Debord, “Method for enhancing heavy hydrocarbon recovery,” 2008, US7938183B2 | spa |
dc.relation.references | M. M. Amin, M. S. Hatamipour, F. Momenbeik, H. Nourmoradi, M. Farhadkhani, and F. Mohammadi-Moghadam, “Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction,” The Scientific World Journal, vol. 2014, Article ID 416752, 6 pages, 2014. | spa |
dc.relation.references | S. H. Hamid and M. A. Ali, “Comparative study of solvents for the extraction of aromatics from naphtha,” Energy Sources, vol. 18, no. 1, pp. 65–84, 1996 | spa |
dc.relation.references | E. A. Taiwo and J. A. Otolorin, “Oil recovery from petroleum sludge by solvent extraction,” Petroleum Science and Technology, vol. 27, no. 8, pp. 836–844, 2009. | spa |
dc.relation.references | A. Holland, D. Wechsler, A. Patel, B. M. Molloy, A. R. Boyd, and P. G. Jessop, “Separation of bitumen from oil sands using a switchable hydrophilicity solvent,” Canadian Journal of Chemistry, vol. 90, no. 10, pp. 805–810, 2012. | spa |
dc.relation.references | H. Sui, L. Xu, X. Li, and L. He, “Understanding the roles of switchable-hydrophilicity tertiary amines in recovering heavy hydrocarbons from oil sands,” Chemical Engineering Journal, vol. 290, pp. 312–318, 2016 | spa |
dc.relation.references | X. Li, Z. Yang, H. Sui, A. Jain, and L. He, “A hybrid process for oil-solid separation by a novel multifunctional switchable solvent,” Fuel, vol. 221, pp. 303–310, 2018. | spa |
dc.relation.references | U.S. Energy Information Administration, “Country analysis brief: Colombia,” 2016, | spa |
dc.relation.references | G. A. Maya, D. P. M. Sierra, R. Castro et al., “Enhanced oil recovery (EOR) status—Colombia,” in Proceedings of SPE Latin American and Caribbean Petroleum Engineering Conference (SPE 139199), Lima, Peru, December 2010. | spa |
dc.relation.references | P. G. Jessop, L. Kozycz, Z. G. Rahami et al., “Tertiary amine solvents having switchable hydrophilicity,” Green Chemistry, vol. 13, no. 3, pp. 619–623, 2011. | spa |
dc.relation.references | S. V. Mattigod, J. A. Frampton, and C. H. Lim, “Effect of ion-pair formation on boron adsorption by kaolinite,” Clays and Clay Minerals, vol. 33, no. 5, pp. 433–437, 1985 | spa |
dc.relation.references | T. Mahmood, M. T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, and A. Alum, “Comparison of different methods for the point of zero charge determination of NiO,” Industrial & Engineering Chemistry Research, vol. 50, no. 17, pp. 10017–10023, 2011. | spa |
dc.relation.references | E. J. Gudiña, J. F. B. Pereira, R. Costa, J. A. P. Coutinho, J. A. Teixeira, and L. R. Rodrigues, “Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns,” Journal of Hazardous Materials, vol. 261, pp. 106–113, 2013. | spa |
dc.relation.references | J. F. B. Pereira, R. Costa, N. Foios, and J. A. P. Coutinho, “Ionic liquid enhanced oil recovery in sand-pack columns,” Fuel, vol. 134, pp. 196–200, 2014. | spa |
dc.relation.references | J. C. Poveda and D. R. Molina, “Average molecular parameters of heavy crude oils and their fractions using NMR spectroscopy,” Journal of Petroleum Science and Engineering, vol. 84-85, pp. 1–7, 2012. | spa |
dc.relation.references | X. Xin, G. Yu, Z. Chen, K. Wu, X. Dong, and Z. Zhu, “Effect of polymer degradation on polymer flooding in heterogeneous reservoirs,” Polymers, vol. 10, no. 8, pp. 857–882, 2018. | spa |
dc.relation.references | W. Yan, S. Huang, and E. H. Stenby, “Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density,” International Journal of Greenhouse Gas Control, vol. 5, no. 6, pp. 1460–1477, 2011. | spa |
dc.relation.references | L. Wang and X. Fu, “Data-driven analyses of low salinity water flooding in sandstones,” Fuel, vol. 234, pp. 674–686, 2018. | spa |
dc.relation.references | G.-Q. Tang and N. R. Morrow, “Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery,” Journal of Petroleum Science and Engineering, vol. 24, no. 2–4, pp. 99–111, 1999 | spa |
dc.relation.references | X. Li, J. Hou, H. Sui, L. Sun, and L. Xu, “Switchable-hydrophilicity triethylamine: formation and synergistic effects of asphaltenes in stabilizing emulsions droplets,” Materials, vol. 11, no. 12, pp. 2431–2441, 2018. | spa |
dc.relation.references | D. F. G. Bautista, E. Vaz dos Santos Neto, and H. L. D. B. Penteado, “Controls on petroleum composition in the Llanos basin, Colombia: implications for exploration,” AAPG Bulletin, vol. 99, no. 8, pp. 1503–1535, 2015. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Tertiary amine | spa |
dc.subject.keyword | Switchable hydrophilicity solvent | spa |
dc.subject.keyword | Enhanced recovery | spa |
dc.subject.lemb | Recobro del petróleo | spa |
dc.subject.lemb | Industria del petróleo | spa |
dc.subject.lemb | Disolventes | spa |
dc.subject.lemb | Aminas | spa |
dc.subject.lemb | Ecología de suelos | spa |
dc.subject.proposal | Amina terciaria | spa |
dc.subject.proposal | Recobro mejorado | spa |
dc.subject.proposal | Solvente hidrófilo conmutable | spa |
dc.title | Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil | spa |
dc.type | master thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/masterThesis | |
dc.type.local | Tesis de maestría | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3

- Nombre:
- 2019VillabonaCindy.pdf
- Tamaño:
- 3.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo principal

- Nombre:
- 2019VillabonaCindy1.pdf
- Tamaño:
- 115.38 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Aprobación facultad

- Nombre:
- 2019VillabonaCindy2.pdf
- Tamaño:
- 522.47 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Acuerdo de confidencialidad
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: