Structural and electronic properties of Pb-doped Bi2Sr2Ca2Cu3O10: Comparison of LDA and GGA calculations

dc.contributor.authorCamargo-Martínez, J. A.spa
dc.contributor.authorMartínez-Pieschaón, D. J.spa
dc.contributor.authorBaquero, R.spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-11-13T18:10:50Zspa
dc.date.available2019-11-13T18:10:50Zspa
dc.date.issued2017-04-05spa
dc.description.abstractWe use Density Functional Theory to study the effects on the crystal structure and the electronic band structure of substituting Pb for Bi in Bi2Sr2Ca2Cu3O10. We further use the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The Virtual Crystal Approximation (VCA) was used to account for the substitution. We found that GGA reproduces better the lattice parameters although in both cases the internal coordinates were reproduced with some uncertainties. We further looked at the behavior of the so called Bi–O pockets, some electronic states that originate on the Bi–O planes and that appear on the Fermi surface (FS) in contradiction to the experimental evidence. We found that LDA and GGA differ on that subject. With 26% Pb and using LDA, the Bi–O pockets run away from the FS. But when GGA is used, it is needed up to 35% Pb to make the Bi–O pockets disappear from the FS. In the last case, once the Bi–O pockets are removed from the FS, we get a very good agreement with angular resolved photo-emission (ARPES) and nuclear magnetic resonance (NMR) experiments.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1016/j.physc.2017.03.004spa
dc.identifier.urihttp://hdl.handle.net/11634/19735
dc.relation.referencesJ. L. Tallon, R. G. Buckley, P. W. Gilberd, M. R. Presland, I. W. M. Brown, M. E. Bowden, L. A. Chistian and R. Goguel, Nature 333 (1988) 153.spa
dc.relation.referencesJ. M. Tarascon, W. R. McKinnon, P. Barboux, D. M. Hwang, B. G. Bagley, L. H. Greene, G. W. Hull, Y. LePage, N. Stoffel and M. Giroud, Phys. Rev. B 38 (1988) 8885.spa
dc.relation.referencesO. V. Kharissova, E. M. Kopnin, V. V. Maltsev, N. I. Leonyuk, L. M. Le´on-Rossanod, I. Y. Pinuse, and B. I. Kharisov, Crit. Rev. Solid State Mater. Sci. 39 (2015) 253.spa
dc.relation.referencesH. Kitaguchi and H. Kumakura, MRS Bulletin: Advances in Bi-Based High-Tc Superconducting Tapes and Wires 26 (2001) 12.spa
dc.relation.referencesV. F. Shamray, A. B. Mikhailova, and A. V. Mitin, Crystallogr. Rep. 54 (2009) 5842.spa
dc.relation.referencesA. Sequeira A, J.V. Yakhmi, R.M. Iyer, H. Rajagopal and P.V.P.S.S. Sastry, Physica C 167 (1990) 291.spa
dc.relation.referencesW. Carrillo-Cabrera and W. Gopel, Physica C 161 (1989) 373.spa
dc.relation.referencesX. Zhu, S. Feng. J. Zhang, G. Lu, K. Chen, K. Wu, Z. Gan, Modern Phys. Lett. B 3 (1989) 707.spa
dc.relation.referencesJ. Yang, C. Ye, B. Zhang, J. Li, J. Kang, Y. Ding, Y. He, J. Zhang, A. He, J. Xiang, Modern Phys. Lett. B 4 (1990) 791.spa
dc.relation.referencesG. Miehe, T. Vogt, H. Fuess and M. Wilhelm, Physica C 171 (1990) 339.spa
dc.relation.referencesE. Giannini, R. Gladyshevskii, N. Clayton, N. Musolino, V. Garnier, A. Piriou, R. Flukiger, Curr. Appl. Phys. 8 (2008) 115.spa
dc.relation.referencesD. L. Feng, A. Damascelli, K. M. Shen, N. Motoyama, D. H. Lu, H. Eisaki, K. Shimizu, J.-i. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G. D. Gu, X. J. Zhou, C. Kim, F. Ronning, N. P. Armitage, and Z.-X Shen, Phys. Rev. Lett. 88 (2002) 107001.spa
dc.relation.referencesH. Matsui, T. Sato, T. Takahashi, H. Ding, H.-B. Yang, S.-C. Wang, T. Fujii, T. Watanabe, A. Matsuda, T. Terashima, and K. Kadowaki, Phys. Rev. B 67 (2003) 060501(R).spa
dc.relation.referencesS. Ideta, K. Takashima, M. Hashimoto, T. Yoshida, A. Fujimori, H. Anzai, T. Fujita, Y. Nakashima, A. Ino, M. Arita, H. Namatame, M. Taniguchi, K. Ono, M. Kubota, D. H. Lu, Z.-X. Shen, K. M. Kojima, and S. Uchida, Phys. Rev. Lett. 104 (2010) 227001.spa
dc.relation.referencesJ. A. Camargo-Mart´ınez, Diego Espitia and R. Baquero, Rev. Mex. Fis. 60(1) (2014) 39.spa
dc.relation.referencesH. Lin et al., Phys. Rev. Lett. 96 (2006) 097001.spa
dc.relation.referencesS. Massidda, J. Yu and A. J. Freeman, Physica C 152 (1988) 251.spa
dc.relation.referencesH. Krakauer and W. E. Pickett, Phys. Rev. Lett. 60 (1988) 1665.spa
dc.relation.referencesD. J. Singh and W. E. Pickett, Phys. Rev. B 51 (1995) 3128.spa
dc.relation.referencesO. K. Andersen, Phys. Rev. B 12 (1975) 3060.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordBi2223spa
dc.subject.keywordElectronic structurespa
dc.subject.keywordBand structurespa
dc.subject.keywordFermi surfacespa
dc.titleStructural and electronic properties of Pb-doped Bi2Sr2Ca2Cu3O10: Comparison of LDA and GGA calculationsspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Structural and electronic properties of Pb-doped Bi2Sr2Ca2Cu3O10: Comparison of LDA and GGA calculations.pdf
Tamaño:
5.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo WOS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: