Estudio de la Bioadsorción de Fenoles Totales Provenientes de Aguas Residuales del Beneficio Húmedo del Café sobre Luffa Cylindrica para la Disminución de la DQO

dc.contributor.advisorCaicedo Orjuela, Obradith
dc.contributor.authorMahecha Pérez, Juan Andrés
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000729191
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=guKP7TcAAAAJ&hl=es
dc.contributor.orcidhttps://orcid.org/0000-0002-3767-0636
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2017-06-20T13:23:46Z
dc.date.accessioned2017-06-24T17:36:00Z
dc.date.available2017-06-20T13:23:46Z
dc.date.available2017-06-24T17:36:00Z
dc.date.issued2016
dc.descriptionEl presente estudio hace referencia al comportamiento de la Demanda Química de Oxígeno (DQO) con la disminución de compuestos fenólicos en las aguas provenientes del beneficio húmedo del café por adsorción sobre el material lignocelulósico Luffa cylindrica. Se llevó a cabo un diseño experimental 23 para realizar los experimentos de bioadsorción en función del pH (5 y 7), tiempo de contacto (30 y 120 minutos) y tamaño de partícula (850 y 2000 μm). Los mejores resultados para la adsorción de los fenoles se lograron a pH 7, tiempo de contacto de 120 minutos y tamaño de partícula de 850 μm con un porcentaje de disminución en la concentración de compuestos fenólicos totales de 97,81%. Se seleccionaron los modelos de isotermas de Langmuir y Freundlich para estimar la bioadsorción de los compuestos fenólicos de las aguas residuales del café sobre la Luffa cylindrica. Se evidenció que el modelo de isotermas de Freundlich se ajusta mejor a la bioadsorción. La ecuación de velocidad de pseudo segundo orden proporcionó la mejor descripción de los datos cinéticos. El análisis de FT-IR permitió observar que la adsorción de los compuestos fenólicos sobre la Luffa cylindrica es favorable con una buena capacidad de adsorción. Tras conocer las capacidades de adsorción, se evidenció que al disminuir en un 84,92% y un 97,81% la concentración de los compuestos fenólicos, la DQO disminuyó un 54% y un 68% su concentración. Por otra parte se analizó el comportamiento de otros parámetros como la turbidez, la conductividad y los sólidos totales disueltos, los cuales demostraron tener alteraciones tras los experimentos de bioadsorción.spa
dc.description.abstractThis study refers to the behavior of the Chemical Oxygen Demand (COD) with the decrease of phenolic compounds in water from wet coffee processing by adsorption onto the lignocellulosic Luffa cylindrica material. Conducted an experimental design for the experiments 23 biosorption function of pH (5 and 7), contact time (30 and 120 minutes) and particle size (850 and 2000 μm). The best results for the adsorption of phenolics were obtained at pH 7, contact time 120 minutes and particle size 850 μm, with a percentage of decrease in the concentration of 97.81%. Langmuir and Freundlich isotherms models were selected to estimate the biosorption of phenolic compounds from wastewater coffee on Luffa cylindrica. It was evident that the Freundlich isotherm model best fits the biosorption. The rate equation of pseudo second order provided the best description of the kinetic data. The FT-IR analysis allowed the observation that the adsorption of phenolics on Luffa cylindrica is favorable with a good adsorptivity. After meeting the adsorption capacities, it was shown that the decrease by 84.92% and 97.81% concentration of phenolic compounds, COD decreased a 54% and a 68% concentration. Moreover, the behavior of other parameters such as turbidity, conductivity and total dissolved solids, which have demonstrated alterations after biosorption experiments analyzed.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMahecha Pérez, J. A. (2016). Estudio de la Bioadsorción de Fenoles Totales Provenientes de Aguas Residuales del Beneficio Húmedo del Café sobre Luffa Cylindrica para la Disminución de la DQO. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttps://hdl.handle.net/11634/2852
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordPhenolic Compounds
dc.subject.keywordLuffa Cylindrica
dc.subject.keywordCOD
dc.subject.keywordBiosorption
dc.subject.keywordWater Wet Coffee Processing
dc.subject.keywordIsotherms
dc.subject.keywordKinetics
dc.subject.lembCompuestos Fenólicos
dc.subject.lembLuffa Cylindrica
dc.subject.lembDQO
dc.subject.lembBioadsorción
dc.subject.lembAguas del Beneficio Húmedo del Café
dc.subject.lembIsotermas
dc.subject.lembCinética
dc.subject.proposalIngeniería Ambientalspa
dc.subject.proposalAgua Residualspa
dc.subject.proposalExperimentospa
dc.titleEstudio de la Bioadsorción de Fenoles Totales Provenientes de Aguas Residuales del Beneficio Húmedo del Café sobre Luffa Cylindrica para la Disminución de la DQOspa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.referencesFederación Nacional de Cafeteros de Colombia, “Un producto especial,” 2015. [Online]. Available: http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/el_cafe/.
dcterms.referencesFederación Nacional de Cafeteros de Colombia, “Nuestro café,” 2015. [Online]. Available: http://www.federaciondecafeteros.org/particulares/es/nuestro_cafe.
dcterms.referencesFederación Nacional de Cafeteros de Colombia, “Producción de café colombiano,” 2015. [Online]. Available: http://www.fao.org/agronoticias/agro noticias/detalle/es/c/328905/.
dcterms.referencesY. Peralta, N. Sanabria, J. Carriazo, C. Ososrio, R. Molina, and S. Moreno, “Abatement of phenolic compounds from coffee wastewater by Fenton-type oxidation using pillared bentonite,” Wulfenia J., vol. 22, no. 2, pp. 152–165, 2015.
dcterms.referencesY. Aguilera and R. Consuegra, “Treatment of coffee wastewater by Gamma radiation,” Havana.
dcterms.referencesM. Gonçalves, M. C. Guerreiro, L. Carlos, and A. Oliveira, “Materiais á base de óxido de ferro para oxidação de compostos presentes no efluente da despolpa do café,” Scielo, vol. 31, no. 7, pp. 1636–1640, 2008
dcterms.referencesP. M. B. Chagas, J. A. Torres, M. C. Silva, and A. D. Corrêa, “Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater.,” Int. J. Biol. Macromol., vol. 81, pp. 568–575, Aug. 2015.
dcterms.referencesR. Fia, A. T. Matos, and F. Resende Luiz Fia, “Biological systems combined for the treatment of coffee processing wastewater: II - Removal of nutrients and phenolic compounds,” Acta Sci. Technol., vol. 35, no. 3, pp. 451–456, 2013.
dcterms.referencesE. Novita, “Biodegradability Simulation of Coffee Wastewater Using Instant Coffee,” Agric. Agric. Sci. Procedia, vol. 9, pp. 217–229, 2016
dcterms.referencesJ. A. Torres, P. M. B. Chagas, M. C. Silva, C. D. Dos Santos, and A. D. Corrêa, “Enzymatic oxidation of phenolic compounds in coffee processing wastewater,” Water Sci. Technol., vol. 73, no. 1, pp. 39–50, 2016.
dcterms.referencesC. Ramirez, C. Oliveros, and J. Sanz, “Manejo de lixiviados y aguas de lavado en el proceso de beneficio húmedo del café,” Cenicafé, vol. 66, no. 1, pp. 46–60, 2015.
dcterms.referencesL. M. Pérez-Hernández, K. Chávez-Quiroz, L. Á. Medina-Juárez, and N. Gámez Meza, “Compuestos fenólicos, melanoidinas y actividad antioxidante de cafe verde y procesado de las especies Coffea arabica y Coffea canephora,” Biotecnia, vol. 15, no. 1, pp. 51–56, 2012
dcterms.referencesS. Rodriguez, R. Perez, and M. Fernandez, “Estudio de la biodegradabilidad anaerobia de las aguas residuales del beneficio del café,” Interciencia, vol. 25, pp. 386–390, 2000.
dcterms.referencesCenicafe, “Cartilla 23 : Tratamiento de aguas residuales,” Cenicafé, 2004.
dcterms.referencesD. a. Zambrano-Franco, J. D. Isaza-Hinestroza, N. Rodríguez-Valencia, and U. López-Posada, “Tratamiento de aguas residuales del lavado del café,” Boletín Técnico. Cenicafé, vol. 20, 1999.
dcterms.referencesD. Zambrano, N. Rodriguez, A. Orozco, and U. Lopez, “Evaluación de un reactor metanogénico tipo filtro anaeróbico de flujo ascendente para tratar aguas mieles del café,” Cenicafé, vol. 66, no. 1, pp. 32–45, 2015.
dcterms.referencesA. Haddis and R. Devi, “Effect of effluent generated from coffee processing plant on the water bodies and human health in its vicinity.,” J. Hazard. Mater., vol. 152, no. 1, pp. 259–62, Mar. 2008
dcterms.referencesM. Rossmann, A. T. Matos, E. C. Abreu, F. F. Silva, and A. C. Borges, “Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands,” J. Environ. Manage., vol. 128, pp. 912–919, Oct. 2013
dcterms.referencesM. Duran, R. B. Padilla, A. M. Martín, J. F. R. Ursinos, and A. Mendoza, “Bíodegradación de los compuestos fenólícos presentes en el alpechín,” Grasas Y Aceites, vol. 42, pp. 271–276, 1991.
dcterms.referencesR. Fia, A. T. de Matos, T. F. Lambert, F. R. L. Fia, and M. P. de Matos, “Tratamento das águas do processamento dos frutos do cafeeiro em filtro anaeróbio seguido por sistema alagado construído: II - remoção de nutrientes e compostos fenólicos,” Eng. Agrícola, vol. 30, no. 6, pp. 1203– 1213, Dec. 2010.
dcterms.referencesS. Mirmohamadsadeghi, T. Kaghazchi, M. Soleimani, and N. Asasian, “An efficient method for clay modification and its application for phenol removal from wastewater,” Appl. Clay Sci., vol. 59–60, pp. 8–12, May 2012
dcterms.referencesM. Ahmaruzzaman, “Adsorption of phenolic compounds on low-cost adsorbents: A review.,” Adv. Colloid Interface Sci., vol. 143, no. 1–2, pp. 48– 67, Nov. 2008.
dcterms.referencesW. Zhong, D. Wang, X. Xu, Q. Luo, B. Wang, X. Shan, and Z. Wang, “Screening level ecological risk assessment for phenols in surface water of the Taihu Lake.,” Chemosphere, vol. 80, no. 9, pp. 998–1005, Aug. 2010.
dcterms.referencesT. . Tsai, Y. . Chen, A. Y. . Shum, and C. . Chen, “Determination of chlorogenic acid in rat blood by microdialysis coupled with microbore liquid chromatography and its application to pharmacokinetic studies,” J. Chromatogr. A, vol. 870, no. 1–2, pp. 443–448, Feb. 2000
dcterms.referencesZ.-H. Shi, N.-G. Li, Q.-P. Shi, H. Tang, Y.-P. Tang, W. Li, L. Yin, J.-P. Yang, and J.-A. Duan, “Synthesis and structure-activity relationship analysis of caffeic acid amides as selective matrix metalloproteinase inhibitors.,” Bioorg. Med. Chem. Lett., vol. 23, no. 5, pp. 1206–11, Mar. 2013.
dcterms.referencesE. Y. Kwon, G. M. Do, Y. Y. Cho, Y. B. Park, S. M. Jeon, and M. S. Choi, “Anti-atherogenic property of ferulic acid in apolipoprotein E-deficient mice fed Western diet: comparison with clofibrate.,” Food Chem. Toxicol., vol. 48, no. 8–9, pp. 2298–303, Jan. 2010.
dcterms.referencesD. Pujol, C. Liu, J. Gominho, M. À. Olivella, N. Fiol, I. Villaescusa, and H. Pereira, “The chemical composition of exhausted coffee waste,” Ind. Crops Prod., vol. 50, pp. 423–429, Oct. 2013.
dcterms.referencesD. M. de Oliveira and D. H. M. Bastos, “Biodisponibilidade de ácidos fenólicos,” Quim. Nova, vol. 34, no. 6, pp. 1051–1056, 2011
dcterms.referencesN. Durán and E. Esposito, “Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review,” Appl. Catal. B Environ., vol. 28, no. 2, pp. 83–99, Nov. 2000
dcterms.referencesJ. Arriel, M. Batista, M. Silva, C. Donizete dos Santos, and A. Duarte, “Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase,” Environ. Technol., vol. 37, no. 10, pp. 1288–1295, 2015
dcterms.referencesD. Blanco, “Validación de los métodos de analisis DQO reflujo cerrado, sulfatos y nitratos, en aguas, en el laboratorio de analisis quimico de aguas residuales de la Universidad Pontifica Bolivariana seccional Bucaramanga,” 2012.
dcterms.referencesA. Bódalo, L. Gomez, E. Gomez, M. Hidalgo, D. Murcia, and E. Gomez, “Eliminación de compuestos fenólicos en aguas residuales ( y II ) Tratamientos físicos y biológicos,” Murcia, 2006.
dcterms.referencesP. Miretzky and A. F. Cirelli, “Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review.,” J. Hazard. Mater., vol. 180, no. 1–3, pp. 1–19, Aug. 2010
dcterms.referencesL. Cuervo, J. Folch, and R. Quiroz, “Lignocelulosa como fuente de azúcares para la producción de etanol,” Bio Tecnol., vol. 13, no. 3, pp. 11–25, 2009
dcterms.referencesX. Guo, S. Zhang, and X. Shan, “Adsorption of metal ions on lignin.,” J. Hazard. Mater., vol. 151, no. 1, pp. 134–42, Feb. 2008.
dcterms.referencesA. Demirbas, “Heavy metal adsorption onto agro-based waste materials: a review.,” J. Hazard. Mater., vol. 157, no. 2–3, pp. 220–9, Sep. 2008.
dcterms.referencesS. WANG and Z. ZHU, “Effects of acidic treatment of activated carbons on dye adsorption,” Dye. Pigment., vol. 75, no. 2, pp. 306–314, 2007
dcterms.referencesW. . Weber, “Physico-Chemical Methods of Treatment of Water and Wastewater,” New York, 1978
dcterms.referencesM. Açıkyıldız, A. Gürses, and S. Karaca, “Preparation and characterization of activated carbon from plant wastes with chemical activation,” Microporous Mesoporous Mater., vol. 198, pp. 45–49, Nov. 2014
dcterms.referencesM. Ahmaruzzaman and D. K. Sharma, “Adsorption of phenols from wastewater.,” J. Colloid Interface Sci., vol. 287, no. 1, pp. 14–24, Jul. 2005.
dcterms.referencesA. Omri, M. Benzina, and N. Ammar, “Preparation, modification and industrial application of activated carbon from almond shell,” J. Ind. Eng. Chem., vol. 19, no. 6, pp. 2092–2099, Nov. 2013
dcterms.referencesA. Aygün, S. Yenisoy-Karakaş, and I. Duman, “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties,” Microporous Mesoporous Mater., vol. 66, no. 2–3, pp. 189–195, Dec. 2003.
dcterms.referencesG. O. El-Sayed, M. M. Yehia, and A. A. Asaad, “Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid,” Water Resour. Ind., vol. 7–8, pp. 66–75, Sep. 2014
dcterms.referencesU. Thawornchaisit and K. Pakulanon, “Application of dried sewage sludge as phenol biosorbent.,” Bioresour. Technol., vol. 98, no. 1, pp. 140–4, Jan. 2007.
dcterms.references
dcterms.referencesS. Arellano, T. Velazquez, G. Osorio, M. Lopez, and B. Gomez, “Adsorption of phenol and dichlorophenols from aqueous solutions by porous clay heterostructure (PCH),” J. Mex. Chem. Soc., vol. 49, no. 3, pp. 287–291, 2005.
dcterms.referencesN. A. Darwish, K. A. Halhouli, and N. M. Al-Dhoon, “Adsorption of phenol from aqueous systems onto spent oil shale,” Sep. Sci. Technol., vol. 31, no. 5, pp. 705–714, 1996
dcterms.referencesZ. Aksu and J. Yener, “Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge,” Process Biochem., vol. 33, no. 6, pp. 649–655, Aug. 1998.
dcterms.referencesO. Abdelwahab and N. K. Amin, “Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies,” Egypt. J. Aquat. Res., vol. 39, no. 4, pp. 215–223, 2013
dcterms.referencesG. Henini, Y. Laidani, F. Souahi, and S. Hanini, “Study of Static Adsorption System Phenol / Luffa Cylindrica Fiber for Industrial Treatment of Wastewater,” Energy Procedia, vol. 18, pp. 395–403, 2012.
dcterms.referencesH. Demir, A. Top, D. Balköse, and S. Ulkü, “Dye adsorption behavior of Luffa cylindrica fibers.,” J. Hazard. Mater., vol. 153, no. 1–2, pp. 389–94, May 2008
dcterms.referencesT. A. Davis, B. Volesky, and A. Mucci, “A review of the biochemistry of heavy metal biosorption by brown algae,” Water Res., vol. 37, no. 18, pp. 4311– 4330, 2003.
dcterms.referencesM. Martin, “Caracterización y aplicación de biomasa residual a la eliminacion de metales pesados,” Universidad de Granada, 2008
dcterms.referencesP. Rodriguez, L. Giraldo, and J. Moreno, “Influencia del pH sobre la adsorcion en carbon activado de Cd (II) y Ni (II) desde soluciones acuosas,” Rev. Colomb. Química, vol. 39, no. 3, pp. 401–412, 2011.
dcterms.referencesR. Devi, V. Singh, and A. Kumar, “COD and BOD reduction from coffee processing wastewater using Avacado peel carbon,” Bioresour. Technol., vol. 99, no. 6, pp. 1853–1860, 2008.
dcterms.referencesI. Levine, Fisicoquímica, Quinta Edi. Madrid: Montse Sanz, 2004
dcterms.referencesJ. Martín, Adsorción física de gases y vapores por carbono. San Vicente del Raspeig: Imprenta de la Universidad, 1990
dcterms.referencesW. Atkins, Química Física, Sexta Edic. Barcelona: Ediciones Omega, S.A., 1999.
dcterms.referencesJ. M. Arias, E. Paternina, and D. Barragán, “Adsorción física sobre sólidos: aspectos termodinámicos,” Quim. Nova, vol. 32, no. 5, pp. 1350–1355, 2009.
dcterms.referencesL. S. Oliveira, A. S. Franca, T. M. Alves, and S. D. F. Rocha, “Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters.,” J. Hazard. Mater., vol. 155, no. 3, pp. 507–12, Jul. 2008.
dcterms.referencesP. C. Mishra and R. K. Patel, “Removal of lead and zinc ions from water by low cost adsorbents.,” J. Hazard. Mater., vol. 168, no. 1, pp. 319–25, Aug. 2009.
dcterms.referencesS. Azizian, “Kinetic models of sorption: a theoretical analysis.,” J. Colloid Interface Sci., vol. 276, no. 1, pp. 47–52, Aug. 2004.
dcterms.referencesM. Asif Tahir, H. N. Bhatti, and M. Iqbal, “Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies,” J. Environ. Chem. Eng., vol. 4, no. 2, pp. 2431-2439, Jun. 2016
dcterms.referencesK. A. Shroff and V. K. Vaidya, “Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis,” Chem. Eng. J., vol. 171, no. 3, pp. 1234–1245, Jul. 2011.
dcterms.referencesL. Bedoya and L. Vera, “Modelamiento de la cinética de boadsorción de Cr (III) usando cáscara de naranja,” DYNA, vol. 76, no. 160, pp. 95–106, 2009.
dcterms.referencesJ. M. Ramos Rincón, “Estudio del proceso de biosorción de colorantes sobre borra (cuncho) de café,” 2010
dcterms.referencesO. Caicedo, B. Higuera, and S. Martinez, “Inducción de actividad peroxidasa y de fenoles totales como respuesta del fruto de lulo (solanum quitoense l.) al patógeno causal de la antracnosis,” Rev. Col. Quim, vol. 38, no. 1, pp. 25– 42, 2009.
dcterms.referencesD. Marina, G. Avella, C. Alberto, O. García, and A. M. Cisneros, “Medición de fenoles y actividad antioxidante en malezas usadas para alimentación animal,” Simp. Metrol., pp. 1–5, 2008
dcterms.referencesC. R. R. Araújo, T. M. Silva, M. Lopes, P. Villela, A. F. C. Alcântara, and N. A. V. Dessimoni-Pinto, “Total antioxidant capacity, total phenolic content and mineral elements in the fruit peel of Myrciaria cauliflora,” Brazilian J. Food Technol., vol. 16, pp. 301–309, 2013
dcterms.referencesIDEAM, “Demanada Química de Oxígeno por reflujo cerrado y volumetría.”
dcterms.referencesV. K. Gupta, D. Pathania, S. Agarwal, and S. Sharma, “Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber,” Carbohydr. Polym., vol. 111, pp. 556–566, 2014
dcterms.referencesC. Ye, N. Hu, and Z. Wang, “Experimental investigation of Luffa cylindrica as a natural sorbent material for the removal of a cationic surfactant,” J. Taiwan Inst. Chem. Eng., vol. 44, no. 1, pp. 74–80, 2013
dcterms.referencesA. Altınışık, E. Gür, and Y. Seki, “A natural sorbent, Luffa cylindrica for the removal of a model basic dye,” J. Hazard. Mater., vol. 179, no. 1, pp. 658– 664, 2010.
dcterms.referencesH. J. Contreras, H. A. Trujillo, G. Arias, J. Pérez, and E. Delgado, “ATR-FTIR spectroscopy of cellulose : instrumental aspect and mathematical treatment of spectra,” Rev. Digit. científica y tecnológica, vol. 8, p. 9, 2010.
dcterms.referencesMinitab 17, “¿Qué es un diagrama de Pareto de los efectos?,” 2016. [Online]. Available: http://support.minitab.com/es-mx/minitab/17/topic library/modeling-statistics/doe/factorial-design-plots/what-is-a-pareto-chart of-effects/.
dcterms.referencesE. Rocha, Ingeniería de tratamiento y acondicionamiento de aguas. Mexico: Universidad Autónoma de Chihuahua, 2010
dcterms.referencesJ. Lazo, A. Navarro, M. Sun-kou, and B. Llanis, “SÍNTESIS Y CARACTERIZACIÓN DE ARCILLAS ORGANOFÍLICAS Y SU APLICACIÓN COMO ADSORBENTES SYNTHESIS AND CHARACTERIZATION OF ORGANOPHILIC CLAYS AND THEIR USE AS ADSORBENTS FOR PHENOL,” Rev Soc Quim Perú, vol. 1, pp. 3–19, 2008.
dcterms.referencesN. Garcia, “Una nueva generación de carbones activados de altas prestaciones para aplicaciones medioambientales,” Universidad de Oviedo, 2014.
dcterms.referencesY. S. Ho and G. McKay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Res., vol. 34, no. 3, pp. 735–742, 2000.
dcterms.referencesM. Doğan, H. Abak, and M. Alkan, “Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters,” J. Hazard. Mater., vol. 164, no. 1, pp. 172–181, 2009
dcterms.referencesA. T. de Matos, M. A. Magalhães, and D. C. Fukunaga, “Remoção de sólidos em suspensão na água residuária da despolpa de frutos do cafeeiro em filtros constituídos por pergaminho de grãos de café submetido a compressões,” Eng. Agrícola, vol. 26, no. 2, pp. 610–616, Aug. 2006.
dcterms.referencesM. Selvamurugan, P. Doraisamy, and M. Maheswari, “An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process,” Ecol. Eng., vol. 36, no. 12, pp. 1686–1690, Dec. 2010

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2016juanmahecha.pdf
Tamaño:
1.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2016cartadefacultad.pdf
Tamaño:
40.83 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2016cartadederechosdeautor.pdf
Tamaño:
41.49 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Plain Text
Descripción: