The use of working variables in the bayesian modeling of mean and dispersion parameters in generalized nonlinear models with random effects

dc.contributor.authorGutiérrez, Andrésspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-12-17T16:57:01Zspa
dc.date.available2019-12-17T16:57:01Zspa
dc.date.issued2014-07-28spa
dc.description.abstractThis article is aimed at reviewing a novel Bayesian approach to handle inference and estimation in the class of generalized nonlinear models. These models include some of the main techniques of statistical methodology, namely generalized linear models and parametric nonlinear regression. In addition, this proposal extends to methods for the systematic treatment of variation that is not explicitly predictedwithin themodel, through the inclusion of random effects, and takes into account the modeling of dispersion parameters in the class of two-parameter exponential family. The methodology is based on the implementation of a two-stage algorithm that induces a hybrid approach based on numerical methods for approximating the likelihood to a normal density using a Taylor linearization around the values of current parameters in an MCMC routine.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1080/03610918.2013.770529spa
dc.identifier.urihttp://hdl.handle.net/11634/20436
dc.relation.referencesAitkin, M. (1987). Modelling variance heterogeneity in normal regression using GLIM. Applied Statistics 36:332–339.spa
dc.relation.referencesBarndorf-Nielsen, O. E. (1978). Information and Exponential Families in Statistical Theory. New York: Wiley.spa
dc.relation.referencesCepeda, E., Achcar, J. A. (2010). Heteroscedastic nonlinear regression models. Comunnications in Statistics Simulation and Computation 39:405–419.spa
dc.relation.referencesDellaportas, P., Smith, A. F. M. (1993). Bayesian inference for generalized linear and proportional hazards model via Gibbs sampling. Applied Statistics 42:443–460.spa
dc.relation.referencesGammerman, D. (1997). Efficient sampling from the posterior distributions in generalized linear mixed models. Statistics and Computing 7:57–68.spa
dc.relation.referencesHastie, T., Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learning. New York: Springer.spa
dc.relation.referencesIbrahim, J. G., Laud, P.W. (1991). On Bayesian analysis of generalized linear models using Jeffreys’s prior. Journal of the American Statistical Association 86:981–986.spa
dc.relation.referencesJorgersen, B. (1987). Exponential dispersion models (with discussion). Journal of the Royal Statistical Association B 49:150.spa
dc.relation.referencesLaird, N. M.,Ware, J. H. (1982).Random effects models for longitudinal data. Biometrics 38:963–974.spa
dc.relation.referencesMcCullagh, P., Nelder, J. A. (1996). Generalized Linear Models. Boca Raton, FL: Chapman and Hall.spa
dc.relation.referencesNeykov, N. M., Filzmoser, P., Neytchev, P. N. (2012). Robust joint modeling of mean and dispersion through trimming. Computational Statistics and Data Analysis 56(1): 34–48.spa
dc.relation.referencesPfefferman, D. (2002). Small area estimation: New developments and directions. International Statistic Review 70:125–143.spa
dc.relation.referencesR Development Core Team (2009). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.spa
dc.relation.referencesSmyth, G. K. (2002). An efficient algorithm for REML in heteroscedastic regression. Journal of Graphical and Computational Statistics 11:836–847.spa
dc.relation.referencesVerbeke, G., Molenberghs, G. (2000). Linear Models for Longitudinal Data. New York: Springer- Verlag.spa
dc.relation.referencesWest, M. (1985). Generalized Linear Models: Outlier Acommodation, Scale Parameters and Prior distributions (with discussion). In: Bayesian Statistics 2, Eds., Bernardo, J. M., De Groot,M. H., Lindley, D. V., and Smith, A. F. M. Oxford: Oxford University Press. pp. 461–484.spa
dc.relation.referencesZhao, Y., Staudenmayer, J., Coull, B. A., Wand, M. P. (2006). General design Bayesian generalized linear mixed models. Statistical Science 21:35–51.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordBayesian analysisspa
dc.subject.keywordGeneralized linear modelsspa
dc.subject.keywordHeteroscedasticityspa
dc.subject.keywordMCMCspa
dc.subject.keywordMixed effects modelsspa
dc.subject.keywordNonlinear regressionspa
dc.titleThe use of working variables in the bayesian modeling of mean and dispersion parameters in generalized nonlinear models with random effectsspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
The use of working variables in the bayesian modeling of mean and dispersion parameters in generalized nonlinear models with random effects.pdf
Tamaño:
246.17 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: