Generación de Movimientos Coordinados de Enjambre en Múltiples Drones a través de Algoritmos de Aprendizaje Profundo
dc.contributor.advisor | Calderón Chávez, Juan Manuel | |
dc.contributor.author | Gómez Garzón, Nicolás David | |
dc.contributor.author | Peña Castro, Néstor Harbey | |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001693663 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001837899 | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-4471-3980 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2022-08-30T12:49:55Z | |
dc.date.available | 2022-08-30T12:49:55Z | |
dc.date.issued | 2022-08-29 | |
dc.description | EL presente trabajo de grado plantea un algoritmo de aprendizaje profundo basado en Q learning que permite a un grupo de agentes representar un movimiento de enjambre, específicamente leader follower implementando una repulsión entre agentes y evasión de obstáculos fijos. El modelo de aprendizaje incluye dos métodos para disminuir el riesgo de divergencia del algoritmo, el primero de ellos es la inclusión de una memoria de experiencias para el sistema y por otro lado el uso de una segunda . La convergencia del Algoritmo lograda en menos de 6000 episodios se verificó con ayuda de la librería MATPLOT para posteriormente ser implementando en el ambiente de simulación del software CoppeliaSim. La evaluación del sistema de implementación del modelo se realizó por medio de 6 experimentos, cada uno de ellos representando distintas situaciones de evasión de obstáculos y seguimiento de líder demostrando que el modelo entrenado cumple correctamente con lo esperado. | spa |
dc.description.abstract | This degree project proposes a deep learning algorithm based on Q learning that allows a group of agents to represent a swarm movement, specifically leader follower, implementing a repulsion between agents and evasion of fixed obstacles. The learning model includes two methods to reduce the risk of algorithm divergence, the first of which is the inclusion of a memory of experiences for the system and on the other hand the use of a second . The convergence of the Algorithm achieved in less than 6000 episodes was verified with the help of the MATPLOT library to later be implemented in the simulation environment of the Coppelia Sim software. The evaluation of the model implementation system was carried out through 6 experiments, each one of them representing different situations of obstacle avoidance and leader follow-up, demonstrating that the trained model correctly complies with what is expected. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Electronico | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Gómez Garzón, N. D. y Peña Castro, N. H. (2022). Generación de Movimientos Coordinados de Enjambre en Múltiples Drones a través de Algoritmos de Aprendizaje Profundo. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional. | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/46788 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Electrónica | spa |
dc.publisher.program | Pregrado Ingeniería Electrónica | spa |
dc.relation.references | Saith Rodrıguez y col. «Fast path planning algorithm for the robocup small size league». En: Robot Soccer World Cup. Springer. 2014, págs. 407-418. | spa |
dc.relation.references | Saith Rodrıguez y col. «STOx’s 2016 Team description paper». En: (2013). | spa |
dc.relation.references | Saith Rodrıguez y col. «STOx’s 2015 Extended Team Description Paper». En: Joao Pessoa, Brazil (2014) | spa |
dc.relation.references | Jose León y col. «Robot swarms theory applicable to seek and rescue operation». En: International Conference on Intelligent Systems Design and Applications. Springer. 2016, págs. 1061-1070 | spa |
dc.relation.references | Juan D Pabon y col. «Event-Triggered Control for Weight-Unbalanced Directed Robot Networks». En: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, págs. 5831-5836. | spa |
dc.relation.references | Nestor I Ospina y col. «Argrohbots: An affordable and replicable ground homogeneous robot swarm testbed». En: IFAC-PapersOnLine 54.13 (2021), págs. 256-261. | spa |
dc.relation.references | Edgar C Camacho, Nestor I Ospina y Juan M Calderón. «COVID-Bot: UV-C Based Autonomous Sanitizing Robotic Platform for COVID-19». En: Ifac-papersonline 54.13 (2021), págs. 317-322. | spa |
dc.relation.references | Edgar C Camacho, Jose Guillermo Guarnizo, Juan M Calderon y col. «Design and Construction of a Cost-Oriented Mobile Robot for Domestic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 293-298. | spa |
dc.relation.references | Laura J Padilla Reyes y col. «Adaptable Recommendation System for Outfit Selection with Deep Learning Approach». En: IFAC-PapersOnLine 54.13 (2021), págs. 605-610. | spa |
dc.relation.references | Daniel A Rincón-Riveros y col. «Automation System Based on NLP for Legal Clinic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 283-288. | spa |
dc.relation.references | Bharat Rao, Ashwin Goutham Gopi y Romana Maione. «The societal impact of commercial drones». En: Technology in Society 45 (2016), págs. 83-90. | spa |
dc.relation.references | U S Robotics. «A Roadmap for US Robotics». En: Robotics (2020), págs. 1-90. URL: http: //www.hichristensen.com/pdf/roadmap-2020.pdf. | spa |
dc.relation.references | oshuah K Stolaroff y col. «Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery». En: Nature communications 9.1 (2018), págs. 1-13. | spa |
dc.relation.references | Frank Veroustraete. «The rise of the drones in agriculture». En: EC agriculture 2.2 (2015), págs. 325-327. | spa |
dc.relation.references | Gustavo A. Cardona y Juan M. Calderon. «Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations». En: Applied Sciences (Switzerland) 9.8 (2019). ISSN: 20763417. DOI: 10.3390/app9081702. | spa |
dc.relation.references | Eliseo Ferrante y col. «“Look out!”: Socially-Mediated Obstacle Avoidance in Collective Transport». En: (sep. de 2010), págs. 572-573. DOI: 10.1007/978-3-642-15461-4_66. | spa |
dc.relation.references | Thanh Thi Nguyen, Ngoc Duy Nguyen y Saeid Nahavandi. «Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications». En: IEEE transactions on cybernetics (2020). | spa |
dc.relation.references | Manuele Brambilla y col. «Swarm robotics: A review from the swarm engineering perspective». En: Swarm Intelligence 7.1 (2013), págs. 1-41. ISSN: 19353812. DOI: 10.1007/ s11721-012-0075-2. | spa |
dc.relation.references | Christopher JCH Watkins y Peter Dayan. «Q-learning». En: Machine learning 8.3-4 (1992), págs. 279-292. | spa |
dc.relation.references | Volodymyr Mnih y col. «Human-level control through deep reinforcement learning». En: nature 518.7540 (2015), págs. 529-533. | spa |
dc.relation.references | Edward Lee Thorndike. «Animal intelligence: An experimental study of the associate processes in animals.» En: American Psychologist 53.10 (1998), pág. 1125. | spa |
dc.relation.references | Lucian Busoniu, Robert Babuska y Bart De Schutter. «A comprehensive survey of multiagent reinforcement learning». En: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38.2 (2008), págs. 156-172. | spa |
dc.relation.references | Eric Bonabeau y col. Swarm intelligence: from natural to artificial systems. 1. Oxford university press, 1999 | spa |
dc.relation.references | Feng WeiXing y col. «Novel algorithms for coordination of underwater swarm robotics». En: 2006 International Conference on Mechatronics and Automation. IEEE. 2006, págs. 654-659. | spa |
dc.relation.references | Timothy Stirling y Dario Floreano. «Energy Efficient Swarm Deployment for Search in Unknown Environments.» En: (ene. de 2010), págs. 562-563. | spa |
dc.relation.references | Wenguo Liu y Alan FT Winfield. «Modeling and optimization of adaptive foraging in swarm robotic systems». En: The International Journal of Robotics Research 29.14 (2010), págs. 1743-1760. | spa |
dc.relation.references | Eliseo Ferrante y col. «Socially-mediated negotiation for obstacle avoidance in collective transport». En: Distributed autonomous robotic systems. Springer, 2013, págs. 571-583. | spa |
dc.relation.references | Patricio Cruz y Rafael Fierro. «Autonomous lift of a cable-suspended load by an unmanned aerial robot». En: 2014 IEEE conference on control applications (CCA). IEEE. 2014, págs. 802-807. | spa |
dc.relation.references | GA Cardona, D Tellez-Castro y E Mojica-Nava. «Cooperative transportation of a cablesuspended load by multiple quadrotors». En: IFAC-PapersOnLine 52.20 (2019), págs. 145-150. | spa |
dc.relation.references | Miguel F Arevalo-Castiblanco y col. «An adaptive optimal control modification with input uncertainty for unknown heterogeneous agents synchronization». En: 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE. 2019, págs. 8242-8247. | spa |
dc.relation.references | Gustavo A Cardona y col. «Adaptive Multi-Quadrotor Control for Cooperative Transportation of a Cable-Suspended Load». En: 2021 European Control Conference (ECC). IEEE. 2021, págs. 696-701. | spa |
dc.relation.references | Gustavo A Cardona y col. «Robust adaptive synchronization of interconnected heterogeneous quadrotors transporting a cable-suspended load». En: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021, págs. 31-37. | spa |
dc.relation.references | Wilson O Quesada y col. «Leader-Follower formation for UAV robot swarm based on fuzzy logic theory». En: International Conference on Artificial Intelligence and Soft Computing. Springer. 2018, págs. 740-751. | spa |
dc.relation.references | Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann y col. «Deep reinforcement learning for swarm systems». En: Journal of Machine Learning Research 20.54 (2019), págs. 1-31. | spa |
dc.relation.references | Xudong Zhu, Fan Zhang y Hui Li. «Swarm Deep Reinforcement Learning for Robotic Manipulation». En: Procedia Computer Science 198 (2022), págs. 472-479. | spa |
dc.relation.references | Sitong Zhang, Yibing Li y Qianhui Dong. «Autonomous navigation of UAV in multiobstacle environments based on a Deep Reinforcement Learning approach». En: Applied Soft Computing 115 (2022), pág. 108194. | spa |
dc.relation.references | E U Robotics AISBL. «Robotics 2020 Multi-Annual Roadmap n for Robotics in Europe, Call 1 ICT23–Horizon 2020». En: Initial Release B 15.01 (2014), pág. 2014. | spa |
dc.relation.references | Henrik I Christensen y col. «A roadmap for us robotics: from internet to robotics». En: Computing Community Consortium 44 (2009). | spa |
dc.relation.references | David Baldazo, Juan Parras y Santiago Zazo. «Decentralized Multi-Agent deep reinforcement learning in swarms of drones for flood monitoring». En: 2019 27th European Signal Processing Conference (EUSIPCO). IEEE. 2019, págs. 1-5. | spa |
dc.relation.references | Adrian Cervera Andes. «Coordinación y control de robots móviles basado en agentes». Tesis doct. Universitat Politècnica de València, 2011. | spa |
dc.relation.references | Pedro José Sanz Valero. Introducción a la robótica inteligente. 2006. | spa |
dc.relation.references | Rebeca Solıs-Ortega. «Enjambres de robots y sus aplicaciones en la exploración y comunicación». En: Memorias de congresos TEC. 2017. | spa |
dc.relation.references | Lukasz Kaiser y col. «Model-based reinforcement learning for atari». En: arXiv preprint arXiv:1903.00374 (2019). | spa |
dc.relation.references | GA Cardona y col. «Autonomous navigation for exploration of unknown environments and collision avoidance in mobile robots using reinforcement learning». En: 2019 SoutheastCon. IEEE. 2019, págs. 1-7 | spa |
dc.relation.references | Pablo San José Barrios. «Comparación de técnicas de aprendizaje por refuerzo jugando a un videojuego de tenis». Tesis doct. ETSI_Informatica, 2019. | spa |
dc.relation.references | Richard S Sutton y Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018. | spa |
dc.relation.references | Peter Dayan. «Reinforcement learning». En: Stevens’ Handbook of Experimental Psychology (2002). | spa |
dc.relation.references | Alba Centeno Franco. «Deep learning». En: (2019) | spa |
dc.relation.references | Ankit Choudhary. «A hands-on introduction to deep Q-learning using OpenAI gym in Python». En: Retrived from https://www. analyticsvidhya. com/blog/2019/04/introduction-deepq-learningpython (2019). | spa |
dc.relation.references | Rafael Berlanga Llavori. «Apuntes de Simulación Informática (curso 2009-2010)». En: (2010). | spa |
dc.relation.references | Israel Garcıa Garcıa y col. «Estudio sobre vehıculos aéreos no tripulados y sus aplicaciones». En: (2017). | spa |
dc.relation.references | Nicolás Gómez y col. «Leader-follower Behavior in Multi-agent Systems for Search and Rescue Based on PSO Approach». En: SoutheastCon 2022. IEEE. 2022, págs. 413-420. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Leader-follower | spa |
dc.subject.keyword | deep reinforcement learning | spa |
dc.subject.keyword | deep learning | spa |
dc.subject.keyword | swarm | spa |
dc.subject.keyword | Deep Q networks | spa |
dc.subject.keyword | Pybullet | spa |
dc.subject.keyword | trajectory | spa |
dc.subject.keyword | simulation | spa |
dc.subject.keyword | repulsion | spa |
dc.subject.lemb | Ingeniería Electrónica | spa |
dc.subject.lemb | Algoritmos-Aprendizaje | spa |
dc.subject.lemb | Software | spa |
dc.subject.lemb | Métodos de simulación | spa |
dc.subject.proposal | enjambre | spa |
dc.subject.proposal | drones | spa |
dc.subject.proposal | aprendizaje por refuerzo profundo | spa |
dc.subject.proposal | Movimientos Coordinados | spa |
dc.subject.proposal | Repulsión | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Pybullet | spa |
dc.subject.proposal | trayectoria | spa |
dc.title | Generación de Movimientos Coordinados de Enjambre en Múltiples Drones a través de Algoritmos de Aprendizaje Profundo | spa |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2022NestorPeñaNicolasGomez.pdf
- Tamaño:
- 4.09 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de Grado

- Nombre:
- Carta aprobacion facultad.pdf
- Tamaño:
- 326.05 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- carta aprobación facultad

- Nombre:
- Carta Derechos de Autor.pdf
- Tamaño:
- 281.37 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta Derechos de autor
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: