Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol

dc.contributor.advisorCandela Soto, Angélica María
dc.contributor.authorGarcía Niño, Laura Milena
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2021-07-13T00:14:50Z
dc.date.available2021-07-13T00:14:50Z
dc.date.issued2021-07-07
dc.descriptionEl uso de los medicamentos convencionales ha traído consigo diferentes efectos secundarios en el cuerpo humano como resultado a la liberación inmediata del principio activo. Adicionalmente, la cascarilla de arroz es un desecho agrícola generado en grandes cantidades provocando problemas de contaminación. Por ende, esta propuesta de investigación evaluó la cinética de liberación del letrozol empleando como material de soporte las nanopartículas de sílice mesoporosa obtenidas a partir de la cascarilla de arroz. La síntesis de las nanopartículas se realizó mediante el método Sol-gel y se caracterizó mediante FTIR y TEM. Los resultados obtenidos evidenciaron una liberación controlada con acción prolongada, ajustándose mejor al modelo cinético de primer orden debido a que el letrozol es liberado de forma proporcional al gradiente de concentración.spa
dc.description.abstractThe use of conventional medications has brought with it different side effects in the human body as a result of the immediate release of the active substance. In addition, rice husk is an agricultural waste generated in large quantities causing pollution problems. Therefore, this research proposal assessed the release kinetics of letrozole using as support material the mesoporous silica nanoparticles obtained from the rice husk. The synthesis of the nanoparticles was performed using the Sol-gel method and characterized by FTIR and TEM. The results obtained showed a controlled release with prolonged action, better adjusting to the first order kinetic model because letrozole is released proportionally to the concentration gradient.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationGarcía Niño, L. M. (2021). Evaluación de nanopartículas de sílice mesoporosa de la cascarilla de arroz como sistema de liberación controlada del letrozol. [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/34871
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programPregrado Química Ambientalspa
dc.relation.referencesAbo-El-Enein, S. A., Eissa, M. A., Diafullah, A. A., Rizk, M. A., & Mohamed, F. M. (2009). Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash. Journal of Hazardous Materials, 172(2–3), 574–579. https://doi.org/10.1016/j.jhazmat.2009.07.036spa
dc.relation.referencesAbu-Thabit, N. Y., & Makhlouf, A. S. H. (2018). Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. En Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume 1: Types and Triggers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101997-9.00001-1spa
dc.relation.referencesAdam, F., Chew, T. S., & Andas, J. (2011). A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass. Journal of Sol-Gel Science and Technology, 59(3), 580–583. https://doi.org/10.1007/s10971-011-2531-7spa
dc.relation.referencesAdira Jaafar, J., Hidayatul Nazirah Kamarudin, N., Dina Setiabudi, H., Najiha Timmiati, S., & Lee Peng, T. (2019). Mesoporous Silica Nanoparticles and Waste Derived-Siliceous Materials for Doxorubicin Adsorption and Release. Materials Today: Proceedings, 19, 1420–1425. https://doi.org/10.1016/j.matpr.2019.11.163spa
dc.relation.referencesAkçay, H. T., & Bayrak, R. (2014). Computational studies on the anastrozole and letrozole, effective chemotherapy drugs against breast cancer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 122, 142–152. https://doi.org/10.1016/j.saa.2013.11.028spa
dc.relation.referencesAquib, M., Farooq, M. A., Banerjee, P., Akhtar, F., Filli, M. S., Boakye-Yiadom, K. O., Kesse, S., Raza, F., Maviah, M. B. J., Mavlyanova, R., & Wang, B. (2019). Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. Journal of Biomedical Materials Research - Part A, 107(12), 2643–2666. https://doi.org/10.1002/jbm.a.36770spa
dc.relation.referencesArcos, C., Pinto, D., & Jorge, R. (2007). La cascarilla de arroz como fuente de SiO 2 Husk of rice as source of SiO 2.spa
dc.relation.referencesArtioli, Y. (2008). Adsorption. Encyclopedia of Ecology, Five-Volume Set, 60–65. https://doi.org/10.1016/B978-008045405-4.00252-4spa
dc.relation.referencesBayat, M., & Nasri, S. (2019). Injectable microgel-hydrogel composites “plum pudding gels”: New system for prolonged drug delivery. En Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00001-1spa
dc.relation.referencesBernal Vargas, A., & Carvajal Cano, L. P. (2019). Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Cultivo De Arroz ( Cascarilla Y Tamo ) Y Su Potencial Aplicación En Viviendas De Interés Social , Paz Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Culti.spa
dc.relation.referencesBrushi, M. L. (2021). Strategies to Modify the Drug Release from Pharmaceutical Systems. ChemicalBook. (2017). Letrozole. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB9286355.htmspa
dc.relation.referencesChen, Y., Ai, K., Liu, J., Sun, G., Yin, Q., & Lu, L. (2015). Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials, 60, 111–120. https://doi.org/10.1016/j.biomaterials.2015.05.003spa
dc.relation.referencesChun, J., Mo Gu, Y., Hwang, J., Oh, K. K., & Lee, J. H. (2019). Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.08.064spa
dc.relation.referencesCrucho, C. I. C. (2015). Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 10(1), 24–38. https://doi.org/10.1002/cmdc.201402290spa
dc.relation.referencesCullity, B. D. (1956). Elements of X-Ray Diffraction Addison-Wesley Metallurgy Series. Journal of Chemical Information and Modeling, 53, 1689–1699.spa
dc.relation.referencesDANE. (2017). Metodología general encuesta nacional de arroz mecanizado ENAM.spa
dc.relation.referencesDash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Review kinetic modeling on drug release from controlled drug delivery systems. 67(3), 217–223.spa
dc.relation.referencesDeeks, E. D., & Scott, L. J. (2009). Exemestane: A review of its use in postmenopausal women with breast cancer. Drugs, 69(7), 889–918. https://doi.org/10.2165/00003495-200969070-00007spa
dc.relation.referencesDelhi, N. (2015). Pharmaceutical Summit and. 2(5).spa
dc.relation.referencesDomínguez, P. (2005). Formas farmacéuticas de liberacion modificada y estereoisómeros ¿Nos aportan algo en la práctica clínica? Boletin de informacion Farmacoterapéutica de Navarra, 13, 1–10.spa
dc.relation.referencesDuarte, C. (2015). El cáncer de mama , desafío mundial Breast cancer , global challenge. Revista Colombiana de Cancerología, 19(1), 1–2.spa
dc.relation.referencesEspinoza Silva, C. V. (2015). Síntesis de nanopartículas potenciales vehículos. 1–82.spa
dc.relation.referencesFoladori, G. (2016). Políticas Públicas En Nanotecnología En América Latina. Problemas del Desarrollo, 47(186), 59–81. https://doi.org/10.1016/j.rpd.2016.03.002spa
dc.relation.referencesGao, L., Sun, J., & Li, Y. (2011). Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery. Journal of Solid State Chemistry, 184(8), 1909–1914. https://doi.org/10.1016/j.jssc.2011.05.052spa
dc.relation.referencesGómez, N. L. (2016). Nanopartículas estímulo-respuesta para la liberación de fármacos. 45(5), 2016.spa
dc.relation.referencesGómez, N. L. (2017). Nanopartículas estímulo-respuesta para la liberación de fármacos.spa
dc.relation.referencesHeng, P. W. S. (2018). Controlled release drug delivery systems. Pharmaceutical Development and Technology, 23(9), 833. https://doi.org/10.1080/10837450.2018.1534376spa
dc.relation.referencesHospital Severo Ochoa. (s/f). Glosario de algunos terminos farmacocinéticos y biofarmacéuticos. 1–6.spa
dc.relation.referencesHospital Universitario Fundación Jiménez Díaz. (2019). Letrozol. http://www.oncohealth.eu/es/area-paciente/cancer/informacion-soporte-paciente/informacion-general/tratamiento/terapia-hormonal/listado-farmacos/letrozolspa
dc.relation.referencesHu, B., He, M., & Chen, B. (2019). Magnetic nanoparticle sorbents. En Solid-Phase Extraction. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816906-3.00009-1spa
dc.relation.referencesHuo, Q. (2011). Synthetic Chemistry of the Inorganic Ordered Porous Materials. En Modern Inorganic Synthetic Chemistry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-53599-3.10016-2spa
dc.relation.referencesIDEAM, UPME, UIS, & COLCIENCIAS. (s/f). Atlas del Potencial Energético de la Biomasa Residual en Colombia.spa
dc.relation.referencesIndurkhya, A., Patel, M., Sharma, P., Abed, S. N., Shnoudeh, A., Maheshwari, R., Deb, P. K., & Tekade, R. K. (2018). Influence of Drug Properties and Routes of Drug Administration on the Design of Controlled Release System. En Dosage Form Design Considerations: Volume I. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814423-7.00006-Xspa
dc.relation.referencesJafari, S., Derakhshankhah, H., Alaei, L., & Fattahi, A. (2019). Biomedicine & Pharmacotherapy Mesoporous silica nanoparticles for therapeutic / diagnostic applications. Biomedicine & Pharmacotherapy, 109(October 2018), 1100–1111. https://doi.org/10.1016/j.biopha.2018.10.167spa
dc.relation.referencesJimenez Herrera, M. P. (2018). Cáncer de Mama y Cuello Uterino. Informe De Evento, 03, 2–15. https://www.ins.gov.co/buscador-eventos/Informesdeevento/CÁNCER DE MAMA Y CUELLO UTERINO SEMESTRE I 2018.pdfspa
dc.relation.referencesJong, W. H. De, & Paul, J. B. (2008). Drug delivery and nanoparticles : Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.spa
dc.relation.referencesKhan, I., Saeed, K., & Khan, I. (2017). Nanoparticles : Properties , applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011spa
dc.relation.referencesKim, B., Rutka, J., & Chan, W. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434–2443. https://doi.org/10.1056/NEJMra0912273spa
dc.relation.referencesKresge, C. T., Vartuli, J. C., Roth, W. J., & Leonowicz, M. E. (2004). The discovery of ExxonMobil’s M41S family of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 148, 53–72. https://doi.org/10.1016/s0167-2991(04)80193-9spa
dc.relation.referencesKumar., Chaubal, M., Domb, A. J., & Majeti, R. K. N. V. (2002). Controlled Release Technology. Encyclopedia of Polymer Science and Technology, 5. https://doi.org/10.1002/0471440264.pst436spa
dc.relation.referencesKumar, S., Malik, M. M., & Purohit, R. (2017). Synthesis Methods of Mesoporous Silica Materials. Materials Today: Proceedings, 4(2), 350–357. https://doi.org/10.1016/j.matpr.2017.01.032spa
dc.relation.referencesLammers, T., Aime, S., Hennink, W. I. M. E., Storm, G., & Kiessling, F. (2011). Theranostic Nanomedicine. https://doi.org/10.1021/ar200019cspa
dc.relation.referencesLe, V. H., Thuc, C. N. H., & Thuc, H. H. (2013). Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Research Letters, 8(1), 58. https://doi.org/10.1186/1556-276x-8-58spa
dc.relation.referencesLi, Barnes, J. C., Aleksandr, B., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590–2605. https://doi.org/10.1039/c1cs15246gspa
dc.relation.referencesLi, J., Shen, S., Kong, F., Jiang, T., Tang, C., & Yin, C. (2018). Effects of pore size on: In vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Advances, 8(43), 24633–24640. https://doi.org/10.1039/c8ra03914cspa
dc.relation.referencesLin, Y.-S. (2012). Critical Considerations in Development of Mesoporous Silica Nanoparticles for Biological Applications. The Journal of Physical Chemistry Letters, 3, 364–374.spa
dc.relation.referencesLiu, Y., Li, K., Mohideen, M., & Ramakrishna, S. (2019). Fiber membranes obtained by melt electrospinning for drug delivery. 173–195. https://doi.org/10.1016/B978-0-12-816220-0.00009-9spa
dc.relation.referencesLozano, C. (2020). Alternativa de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria. Universidad Nacional Abierta y a Distancia - UNAD, 67. https://repository.unad.edu.co/bitstream/handle/10596/33698/cllozanor.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesLu, Y., Sun, W., & Gu, Z. (2014). Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release, 194, 1–19. https://doi.org/10.1016/j.jconrel.2014.08.015spa
dc.relation.referencesLyddy, R. (2009). Nanotechnology. Information Resources in Toxicology, 321–328. https://doi.org/10.1016/B978-0-12-373593-5.00036-7spa
dc.relation.referencesManju, S., & Sreenivasan, K. (2010). Functionalised nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials: Science and Design, 267–297. https://doi.org/10.1533/9781845699802.2.267spa
dc.relation.referencesMcNeil, S. E. (2005). Nanotechnology for the biologist. Journal of Leukocyte Biology, 78(3), 585–594. https://doi.org/10.1189/jlb.0205074spa
dc.relation.referencesMehtani, D., Seth, A., Sharma, P., Maheshwari, N., Kapoor, D., Shrivastava, S. K., & Tekade, R. K. (2019). Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. En Biomaterials and Bionanotechnology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814427-5.00004-4spa
dc.relation.referencesMhlanga, N., & Sinha, S. (2015). International Journal of Biological Macromolecules Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide / metal oxide-based hybrids. International Journal of Biological Macromolecules, 72, 1301–1307. https://doi.org/10.1016/j.ijbiomac.2014.10.038spa
dc.relation.referencesMinisterio de Salud. (s/f). Qué es la sangre. https://www.minsal.cl/dona-sangre/que-es-la-sangre/ Ministerio de Salud y Protección Social de Colombia. (s/f). Cáncer de mama. https://www.minsalud.gov.co/salud/publica/ssr/Paginas/Cancer-de-mama.aspxspa
dc.relation.referencesMinisterio de Salud y Protección Social, & Instituto Nacional de Cancerología. (2012). El cáncer de mama: un problema creciente en Colombia. Hechos y Acciones, 4(2), 1–2. https://www.cancer.gov.co/files/libros/archivos/95685f345e64aa9f0fece8a589b5acc3_BOLETIN HECHOS Y ACCIONES MAMA.PDFspa
dc.relation.referencesMinisterio de Sanidad Política Social e Igualdad. (s/f). Ficha Técnica Femara 2,5 mg. https://cima.aemps.es/cima/pdfs/es/ft/61628/FT_61628.pdfspa
dc.relation.referencesMitran, R., Deaconu, M., Matei, C., & Berger, D. (2019). Chapter 11 - Mesoporous Silica as Carrier for Drug-Delivery Systems. 351–374. https://doi.org/https://doi.org/10.1016/B978-0-12-814033-8.00011-4spa
dc.relation.referencesMonotta, J. J. (2017). Evaluación de la cinética de liberación de un fármaco modelo con clasificación biofermacéutica clase II, desde matrices comprimidas compuestas por materiales poliméricos aniónicos.spa
dc.relation.referencesMusić, S., Filipović-Vinceković, N., & Sekovanić, L. (2011). Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering, 28(1), 89–94. https://doi.org/10.1590/S0104-66322011000100011spa
dc.relation.referencesNiculescu, V. C. (2020). Mesoporous Silica Nanoparticles for Bio-Applications. Frontiers in Materials, 7(February). https://doi.org/10.3389/fmats.2020.00036spa
dc.relation.referencesOsman, A. I., Abdelkader, A., Farrell, C., Rooney, D., & Morgan, K. (2019). Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches. Fuel Processing Technology, 192(May), 179–202. https://doi.org/10.1016/j.fuproc.2019.04.026spa
dc.relation.referencesPáez, O. L., Navarro, A. R., Páez, C. A. J., & Herrera, L. F. R. (2016). Rice husk as an alternative in decontamination processes. Scielo, 2. https://doi.org/http://dx.doi.org/10.22507/pml.v11n2a12spa
dc.relation.referencesParashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729–3749. https://doi.org/10.1007/s10854-020-02994-8spa
dc.relation.referencesPareek, V., Bhargava, A., Gupta, R., Jain, N., & Panwar, J. (2017). Synthesis and Applications of Noble Metal Nanoparticles: A Review. Advanced Science, Engineering and Medicine, 9(7), 527–544. https://doi.org/10.1166/asem.2017.2027spa
dc.relation.referencesPark, K. (2013). Facing the Truth about Nanotechnology in Drug Delivery. 9, 7442–7447.spa
dc.relation.referencesPeñaranda, L. V., Montenegro, S. P., & Giraldo, P. A. (2018). Aprovechamiento de Residuos Agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2), 141–150.spa
dc.relation.referencesPermanadewi, I., Kumoro, A. C., Wardhani, D. H., & Aryanti, N. (2019). Modelling of controlled drug release in gastrointestinal tract simulation. Journal of Physics: Conference Series, 1295(1), 0–8. https://doi.org/10.1088/1742-6596/1295/1/012063spa
dc.relation.referencesPetrovska, B. B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6(11), 1–5. https://doi.org/10.4103/0973-7847.95849spa
dc.relation.referencesPiñeros, Y. (2016). Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia.spa
dc.relation.referencesPrasad, S., Kumar, V., Kirubanandam, S., & Barhoum, A. (2018). Engineered nanomaterials: nanofabrication and surface functionalization. En Emerging Applications of Nanoparticles and Architecture Nanostructures (pp. 305–340). Elsevier. https://doi.org/10.1016/B978-0-323-51254-1.00011-7spa
dc.relation.referencesPurnawira, B., Purwaningsih, H., Ervianto, Y., Pratiwi, V. M., Susanti, D., Rochiem, R., & Purniawan, A. (2019). Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012018spa
dc.relation.referencesRafique, M., Shaikh, A. J., Rasheed, R., Tahir, M. B., Bakhat, H. F., Rafique, M. S., & Rabbani, F. (2017). A Review on Synthesis, Characterization and Applications of Copper Nanoparticles Using Green Method. Nano, 12(04), 1750043. https://doi.org/10.1142/S1793292017500436spa
dc.relation.referencesRodin, A. (1911). Adsorption.spa
dc.relation.referencesRosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00156bspa
dc.relation.referencesSaboktakin, M. R. (2017). Synthesis and Characterization of Biodegradable Thiolated Chitosan Nanoparticles as Targeted Drug Delivery System. Journal of Nanomedicine & Nanotechnology, s4(4), 1–4. https://doi.org/10.4172/2157-7439.s4-001spa
dc.relation.referencesSáez, V., Hernáez, E., & López, L. (2003). Liberación controlada de fármacos. aplicaciones biomédicas. 4(2), 111–122.spa
dc.relation.referencesSajid, M., & Akash, H. (s/f). Drug Stability and Chemical Kinetics.spa
dc.relation.referencesSaputra, R. (2019). Letrozol KEMEX. Journal of Chemical Information and Modeling, 53(9), 1689–1699.spa
dc.relation.referencesSDBS. (s/f). Sodium metasilicate hidrate. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgispa
dc.relation.referencesShi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 10(9), 3223–3230. https://doi.org/10.1021/nl102184cspa
dc.relation.referencesSingh, B. (2018). Rice husk ash. En Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102156-9.00013-4spa
dc.relation.referencesSodeifian, G., & Sajadian, S. A. (2018). Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). Journal of Supercritical Fluids, 133(August 2017), 239–252. https://doi.org/10.1016/j.supflu.2017.10.015spa
dc.relation.referencesSpruill, W., Wade, W., Dipiro, J., Blouin, R., & Pruemer, J. (2014). Concepts in clinical pharmacokinetics. Sixth edit, 1–18.spa
dc.relation.referencesTang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504–1534. https://doi.org/10.1002/adma.201104763spa
dc.relation.referencesThompson, M. T. (2014). Review of Diode Physics and the Ideal (and Later, Nonideal) Diode. En Intuitive Analog Circuit Design. https://doi.org/10.1016/b978-0-12-405866-8.00003-6spa
dc.relation.referencesTibbitt, M. W., Dahlman, J. E., & Langer, R. (2016). Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 138(3), 704–717. https://doi.org/10.1021/jacs.5b09974spa
dc.relation.referencesTran, T. N., Pham, T. V. A., Le, M. L. P., Nguyen, T. P. T., & Tran, V. M. (2013). Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(4). https://doi.org/10.1088/2043-6262/4/4/045007spa
dc.relation.referencesUllattil, S. G., & Periyat, P. (2017). Sol-Gel Synthesis of Titanium Dioxide Chapter 9 Sol-Gel Synthesis of Titanium Dioxide. Advances in Sol-Gel Derived Materials and Technologies, February, 271–283. https://doi.org/10.1007/978-3-319-50144-4spa
dc.relation.referencesUniversidad de Valencia. (2013). Tema 7. Superficies sólidas: adsorción y catálisis heterogénea. Departamento de Quimica y fisica., 28. http://www.academia.edu/download/39329863/tema_7_parte_1_ads_completa.pdfspa
dc.relation.referencesUniversidad Popular del Cesar. (s/f). Liberación controlada de fármacos. 1–40.spa
dc.relation.referencesVallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. Angewandte Chemie - International Edition, 46(40), 7548–7558. https://doi.org/10.1002/anie.200604488spa
dc.relation.referencesVaz, S. (s/f). Biomass and Green Chemistry.spa
dc.relation.referencesVazquez, N. I., Gonzalez, Z., Ferrari, B., & Castro, Y. (2017). Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(3), 139–145. https://doi.org/10.1016/j.bsecv.2017.03.002spa
dc.relation.referencesVergara‐Castañeda, H. A., Luna‐Bárcenas, G., & Pool, H. (2020). Emerging and Potential Bio‐Applications of Agro‐Industrial By‐products Through Implementation of Nanobiotechnology. Food Wastes and By‐products, 413–443. https://doi.org/10.1002/9781119534167.ch14spa
dc.relation.referencesWeissig, V., Pettinger, T. K., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International journal of nanomedicine, 9, 4357–4373. https://doi.org/10.2147/IJN.S46900spa
dc.relation.referencesWorathanakul, P., Payubnop, W., & Muangpet, A. (2009). Characterization for post-treatment effect of bagasse ash for silica extraction. World Academy of Science, Engineering and Technology, 56(August 2009), 360–362. https://doi.org/10.5281/zenodo.1062185spa
dc.relation.referencesYanes, R. E., Lu, J., & Tamanoi, F. (2012). Nanoparticle-Based Delivery of siRNA and miRNA for Cancer Therapy (Vol. 32, pp. 185–203). https://doi.org/10.1016/B978-0-12-404741-9.00009-Xspa
dc.relation.referencesYun, Y. H., Lee, B. K., & Park, K. (2015). NU SC. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2015.10.005spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cb
dc.rights.localAcceso cerradospa
dc.subject.keywordControlled releasespa
dc.subject.keywordLetrozolespa
dc.subject.keywordMesoporous silica nanoparticlesspa
dc.subject.keywordRice huskspa
dc.subject.lembArroz - Abonos y fertilizantesspa
dc.subject.lembResiduos agrícolasspa
dc.subject.lembCascarilla de arrozspa
dc.subject.proposalCascarilla de arrozspa
dc.subject.proposalLetrozolspa
dc.subject.proposalLiberación controladaspa
dc.subject.proposalNanopartículas de sílice mesoporosaspa
dc.titleEvaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozolspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2021GarciaLaura.pdf
Tamaño:
2.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2021GarciaLaura1.pdf
Tamaño:
129.22 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación Facultad
Thumbnail USTA
Nombre:
2021GarciaLaura2.pdf
Tamaño:
172.65 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de Confidencialidad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: