Revisión bibliométrica de las principales metodologías para la evaluación del uso y cobertura del suelo

dc.contributor.advisorAvellaneda Diaz, Elisa Maria
dc.contributor.authorVargas Becerra, Edison Fabian
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.coverage.campusCRAI-USTA Tunjaspa
dc.date.accessioned2024-04-24T19:33:37Z
dc.date.available2024-04-24T19:33:37Z
dc.date.issued2024-04-10
dc.descriptionEsta investigación presenta una revisión bibliométrica centrada en examinar las metodologías empleadas en la clasificación supervisada y no supervisada del uso y cobertura del suelo. Se realizaron búsquedas en Google Scholar, Science Direct y Scopus para seleccionar 31 artículos entre 2018 y 2024. Los artículos analizados utilizan metodologías de teledetección o sistemas de información geográfica (SIG) y presentan resultados relacionados con la precisión de las metodologías de evaluación de LULC. Se observó que la clasificación supervisada fue la más utilizada, mientras que las técnicas de clasificación más empleadas fueron el índice NDVI, seguido por el algoritmo de máxima verosimilitud. Estos hallazgos contribuyen a aumentar la precisión y fiabilidad de los análisis de uso y cobertura del suelo para abordar los desafíos ambientales y sociales asociados con el desarrollo urbano y rural.spa
dc.description.abstractThis research presents a bibliometric review focused on examining the methodologies used in the supervised and unsupervised classification of land use and land cover. Google Scholar, Science Direct, and Scopus were searched to select 31 articles between 2018 and 2024. The articles analyzed use remote sensing or geographic information systems (GIS) methodologies and present results related to the accuracy of LULC assessment methodologies. It was observed that supervised classification was the most used, while the most used classification techniques were the NDVI index, followed by the maximum likelihood algorithm. These findings contribute to improving the accuracy and reliability of land use and land cover analyzes to address environmental and social challenges associated with urban and rural development.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationVargas Becerra, E. (2024). Revisión bibliométrica de las principales metodologías para la evaluación del uso y cobertura del suelo. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucionalspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/54822
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.relation.referencesAdugna, T., Xu, W., & Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote sensing, 14(3). https://doi.org/https://doi.org/10.3390/rs14030574spa
dc.relation.referencesChen, H., Song, J., Wu, C., Du, B., & Yokoya, N. (2023). Exchange means change: An unsupervised single-temporal change detection framework based on intra- and inter-image patch exchange. ISPRS Journal of Photogrammetry and Remote Sensing, 206, 87-105. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2023.11.004spa
dc.relation.referencesChopade, M. R., Mahajan, S., & Chaube, N. (2023). Assessment of land use, land cover change in the mangrove forest of Ghogha area, Gulf of Khambhat, Gujarat. Expert Systems with Applications, 212. https://doi.org/https://doi.org/10.1016/j.eswa.2022.118839spa
dc.relation.referencesChowdhury, S. (2024). Comparison of accuracy and reliability of random forest, support vector machine, artificial neural network and maximum likelihood method in land use/cover classification of urban setting. Environmental Challenges, 14. https://doi.org/https://doi.org/10.1016/j.envc.2023.100800spa
dc.relation.referencesChughtai, A. H., Abbasi, H., & Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22.spa
dc.relation.referencesda Silva, V. S., Salami, G., da Silva, M. I., & Silva, E. A. (2020). Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geology, Ecology, and Landscapes, 4(2). https://doi.org/https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1080/24749508.2019.1608409spa
dc.relation.referencesDargains, A., & Cabral, P. (2021). A GIS-based methodology for sustainable farming planning: Assessment of land use/cover changes and carbon dynamics at farm level. Land Use Policy, 111. https://doi.org/https://doi.org/10.1016/j.landusepol.2021.105788spa
dc.relation.referencesDarvishi, A., Yousefi, M., & Marullb, J. (2020). Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy, 99. https://doi.org/https://doi.org/10.1016/j.landusepol.2020.105098spa
dc.relation.referencesDavis, F., & Balaji Bhaskar, M. S. (2022). Assessment of water, soil contamination and land cover changes in Sims and Vince Bayou urban watersheds of Houston, Texas. Watershed Ecology and the Environment, 4, 73-85. https://doi.org/https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.wsee.2022.08.002spa
dc.relation.referencesDemarchi, L., Canters , F., Cariou, C., Licciardi , G., & Cheung-Wai Chan, J. (2018). Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 166-179. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2013.10.012spa
dc.relation.referencesDu, L., Dong, C., Kang, X., Xinglong, Q., & Gu, L. (2023). Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020. Journal of Environmental Management, 332. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.117149spa
dc.relation.referencesEdosa, B., & Nagasa, M. (2024). Spatiotemporal assessment of land use land cover change, driving forces, and consequences using geospatial techniques: The case of Naqamte city and hinterland, western Ethiopia. Environmental Challenges, 14. https://doi.org/https://doi.org/10.1016/j.envc.2023.100830spa
dc.relation.referencesEspinoza Guzmán, M. A., Borrego, D. A., & Sahagún Sánchez, F. J. (2023). Evaluation of recent land-use and land-cover change in a mountain region. Trees, Forests and People, 11. https://doi.org/https://doi.org/10.1016/j.tfp.2023.100370spa
dc.relation.referencesGeta Bihonegn, B., & Gebeyehu Awoke , A. (2023). Evaluating the impact of land use and land cover changes on sediment yield dynamics in the upper Awash basin, Ethiopia the case of Koka reservoir. Heliyon, 12(9). https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e23049spa
dc.relation.referencesHaque, I., & Basak, R. (2017). Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bang. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/https://doi.org/10.1016/j.ejrs.2016.12.003spa
dc.relation.referencesHasmadi, M., HZ, P., & MF, S. (2009). Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Journal of Society and Space, 5, 1-10.spa
dc.relation.referencesJing, Q., He, J., Li, Y., Yang, X., Peng, Y., Wang, H., Zhang, X. (2024). Analysis of the spatiotemporal changes in global land cover from 2001 to 2020. Science of The Total Environment, 908.spa
dc.relation.referencesJung, M., & Chang, E. (2019). NDVI-based land-cover change detection using harmonic analysis. International Journal of Remote Sensing (36). https://doi.org/https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1080/01431161.2015.1007252spa
dc.relation.referencesKumar, A., & Kumar Gorai, A. (2023). A comparative evaluation of deep convolutional neural network and deep neural network-based land use/land cover classifications of mining regions using fused multi-sensor satellite data. Advances in Space Research, 72(11). https://doi.org/https://doi.org/10.1016/j.asr.2023.08.057spa
dc.relation.referencesLong Feng, Q., Liu, J., & Gong, J. (2018). Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China. Water, 74, 1437-1455. https://doi.org/https://doi.org/10.3390/w7041437spa
dc.relation.referencesLong, X., Lin, H., An, X., Chen, S., Qi, S., & Zhang, M. (2022). Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecological Indicators, 136. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.108619spa
dc.relation.referencesMatsa, M., Mupepi, O., Musasa, T., & Defe, R. (2020). A GIS and remote sensing aided assessment of land use/cover changes in resettlement areas; a case of ward 32 of Mazowe district, Zimbabwe. Journal of Environmental Management, 276. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.111312spa
dc.relation.referencesMeng, Y., Yang, M., Liu, S., Mou, Y., Peng, C., & Zhou, X. (2021). Quantitative assessment of the importance of bio-physical drivers of land cover change based on a random forest method. Ecological Informatics, 61. https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101204spa
dc.relation.referencesNgadi Scarpetta, Y., Lebourgeois, V., Laques, A. E., dieye, M., Bourgoin, J., & Bégué, A. (2023). BFASTm-L2, an unsupervised LULCC detection based on seasonal change detection – An application to large-scale land acquisitions in Senegal. International Journal of Applied Earth Observation and Geoinformation, 121. https://doi.org/https://doi.org/10.1016/j.jag.2023.103379spa
dc.relation.referencesParadis, E. (2022). Probabilistic unsupervised classification for large-scale analysis of spectral imaging data. International Journal of Applied Earth Observation and Geoinformation, 107. https://doi.org/https://doi.org/10.1016/j.jag.2022.102675spa
dc.relation.referencesPrasad, P., Loveson, V. J., Chandra, P., & Kotha , M. (2022). Evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms. Ecological Informatics, 68. https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101522spa
dc.relation.referencesPurwanto, Latifah, S., Yonariza, Akhsani , F., Sofiana, E. I., & Riski Ferdiansah, M. (2023). Land cover change assessment using random forest and CA markov from remote sensing images in the protected forest of South Malang, Indonesia. Remote Sensing Applications: Society and Environment, 32. https://doi.org/https://doi.org/10.1016/j.rsase.2023.101061spa
dc.relation.referencesRash, A., Mustafa, Y., & Hamad, R. (2023). Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq. Heliyon, 9(11). https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e21253spa
dc.relation.referencesRuggeri, S., Henao Cespedes, V., Garcés Gómez, Y., & Parra Uzcátegui, A. (2021). Optimized unsupervised CORINE Land Cover mapping using linear spectral mixture analysis and object-based image analysis. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 1061-1069. https://doi.org/https://doi.org/10.1016/j.ejrs.2021.10.009spa
dc.relation.referencesSisay, G., Gitima, G., Mersha , M., & Alemu, A. (2021). Assessment of land use land cover dynamics and its drivers in Bechet Watershed Upper Blue Nile Basin, Ethiopia. Remote Sensing Applications: Society and Environment, 24. https://doi.org/https://doi.org/10.1016/j.rsase.2021.100648spa
dc.relation.referencesSobhani, P., Esmaeilzadeh, H., & Mostafavi, H. (2021). Simulation and impact assessment of future land use and land cover changes in two protected areas in Tehran, Iran. Sustainable Cities and Society, 75. https://doi.org/https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.scs.2021.103296spa
dc.relation.referencesTnag, X., Woodcock, C., Olofsson, P., & Hutyra, L. (2021). Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin. Remote Sensing of Environment, 256. https://doi.org/https://doi.org/10.1016/j.rse.2021.112336spa
dc.relation.referencesTola, B., & Deyassa, G. (2024). A modeling approach for evaluating and predicting the impacts of land use land cover changes on groundwater recharge in Walga Watershed, Upper Omo Basin, Central Ethiopia. Journal of Hydrology: Regional Studies, 51. https://doi.org/https://doi.org/10.1016/j.ejrh.2024.101659spa
dc.relation.referencesTolessa, T., Kidane, M., & Bezie, A. (2021). Assessment of the linkages between ecosystem service provision and land use/land cover change in Fincha watershed, North-Western Ethiopia. Heliyon, 7(7). https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e07673spa
dc.relation.referencesTraore, M., Son Lee, M., Rasul, A., & Balew, A. (2021). Assessment of land use/land cover changes and their impacts on land surface temperature in Bangui (the capital of Central African Republic). Environmental Challenges, 4. https://doi.org/https://doi.org/10.1016/j.envc.2021.100114spa
dc.relation.referencesTrujillo-Jiménez, M., Liberoff, A. L., Pessacg, N., Pacheco, C., & Flaherty, S. (2020). Uso de Métodos de Aprendizaje Automático y teledetección para clasificación de uso y cobertura del suelo en un valle semiárido de la Patogonia.spa
dc.relation.referencesVelastegui Montoya , A., Escandón-Panchana, P., Peña-Villacreses, G., & Herrera-Franco, G. (2023). Land use/land cover of petroleum activities in the framework of sustainable development. Cleaner Engineering and Technology(15). https://doi.org/https://doi.org/10.1016/j.clet.2023.100659spa
dc.relation.referencesZhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). Land Use and Land Cover Classification Meets Deep Learning: A Review. Sensors, 23(21). https://doi.org/https://doi.org/10.3390/s23218966spa
dc.relation.referencesZhao, Z., Islam, F., Waseem, L. A., Tariq, A., Nawaz , M., Islam, I. U., Hatamleh, W. (2024). Comparison of Three Machine Learning Algorithms Using Google Earth Engine for Land Use Land Cover Classification. Rangeland Ecology & Management, 92, 129-137. https://doi.org/https://doi.org/10.1016/j.rama.2023.10.007spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordLand usespa
dc.subject.keywordSystematic reviewspa
dc.subject.keywordPlant coverspa
dc.subject.proposalUso del suelospa
dc.subject.proposalCobertura vegetalspa
dc.subject.proposalRevisión sistemáticaspa
dc.titleRevisión bibliométrica de las principales metodologías para la evaluación del uso y cobertura del suelospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2024edisonvargas.pdf
Tamaño:
603.99 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024edisonvargas1.pdf
Tamaño:
458.63 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
AprobacionFacultadCRAI_IngAmb_Abril2024.pdf
Tamaño:
334.11 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta facultad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: