Dynamics of damped oscillations: physical pendulum
dc.contributor.author | Quiroga, G. D. | spa |
dc.contributor.author | Ospina-Henao, P. A. | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2019-06-06T21:45:52Z | spa |
dc.date.available | 2019-06-06T21:45:52Z | spa |
dc.date.issued | 2017-10-23 | spa |
dc.description.abstract | The frictional force of the physical damped pendulum with the medium is usually assumed proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show that such assumption leads to contradictions with the experimental observation. For that, a more general model of a damped pendulum is introduced, assuming a power-law with integer exponents in the damping term of the equation of motion, and also in the nonharmonic regime. A Runge-Kutta solver is implemented to compute the numerical solutions for the first five powers, showing that the linear drag has the fastest decay to rest and that bigger exponents have long-time fluctuation around the equilibrium position, which have not correlation (as is expected) with experimental results. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Quiroga, G. D., & Ospina-Henao, P. A. (2017). Dynamics of damped oscillations: Physical pendulum. Bogotá: doi:10.1088/1361-6404/aa8961 | spa |
dc.identifier.doi | https://doi.org/10.1088/1361-6404/aa8961 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/17053 | |
dc.relation.references | D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics - Extended. John Wiley & Sons, New York, USA, 2014, 10th edition, pp. 430-432. | spa |
dc.relation.references | R. Serway and J. Jewett. Physics for scientists and engineers with modern physics. Brooks/Cole, Boston, USA, 2014, 9th edition, pp. 468-469. | spa |
dc.relation.references | F. M. S. Lima and P. Arun. An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime. Am. J. Phys., 74(10):892–895, (2006). | spa |
dc.relation.references | F. M. S. Lima. Simple "log formulae" for pendulum motion valid for any amplitude. Eur. J. Phys., 29(5):1091–1098, (2008). | spa |
dc.relation.references | J.C. Simbach and J. Priest. Another look at a damped physical pendulum. Am. J. Physs, 73(11):1079–1080, (2005). | spa |
dc.relation.references | R. A. Nelson and M. G. Olsson. The pendulum-rich physics from a simple system. Am. J. Phys., 54(2):112–121, (1986). | spa |
dc.relation.references | C. M. Falco. Phase-space of a driven, damped pendulum (josephson weak link). Am. J. of Phys., 44(8):733–740, (1976). | spa |
dc.relation.references | W. D. Hayes. On the equation for a damped pendulum under constant torque. Z. Angew. Math. Phys., 4(5):398–401, (1953). | spa |
dc.relation.references | H. Dekker. Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep., 80(1):1–110, (1981). | spa |
dc.relation.references | E. U. Condon. The physical pendulum in quantum mechanics. Phys. Rev., 31(5):891, (1928). | spa |
dc.relation.references | G. Terenzi. Dynamics of sdof systems with nonlinear viscous damping. J. Eng. Mech.s, 125(8):956–63, (1999). | spa |
dc.relation.references | Wen-Hsiung Lin and A. K. Chopra. Earthquake response of elastic singledegree- of-freedom systems with nonlinear viscoelastic dampers. J. Eng. Mech., 129(6):597–606, (2003). | spa |
dc.relation.references | F. Rüdinger. Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation. J. Eng. Mech., 132(1):46–53, (2006). | spa |
dc.relation.references | Gu Dazhi and RI Tanner. The drag on a sphere in a power-law fluid. J. Non- Newton. Fluid., 17 (1):1-12, (1985). | spa |
dc.relation.references | A. P. French. Vibrations and waves. The Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2001, 1st edition, pp. 62-67. | spa |
dc.relation.references | J. C. Butcher. Numerical methods for ordinary differential equations. (JohnWiley & Sons, Chichester,England, 2008), 2nd edition, pp. 93-99. | spa |
dc.relation.references | L. Perko. Differential equations and dynamical systems, volume 7. Springer Science & Business Media, New York, USA, 2001, 3rd edition, pp. 264-267. | spa |
dc.relation.references | Jean-Jacques E. Slotine and W. Li. Applied nonlinear control. prentice-Hall Englewood Cliffs, New Jersey, USA, 1991, 1st edition, pp. 64-65. | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Damped oscillations | spa |
dc.subject.keyword | Physical Pendulum | spa |
dc.subject.keyword | Non-conservative systems | spa |
dc.title | Dynamics of damped oscillations: physical pendulum | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Dynamics of damped oscillations: physical pendulum.pdf
- Tamaño:
- 1.36 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo WOS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: