A proposal for redesigning the water quality network of the Tunjuelo river in Bogotá, Colombia through a spatio-temporal analysis
dc.contributor.author | Peña-Guzmán, Carlos Andrés | spa |
dc.contributor.author | Soto, Lina | spa |
dc.contributor.author | Angie, Diaz | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-05-19T15:49:39Z | spa |
dc.date.available | 2020-05-19T15:49:39Z | spa |
dc.date.issued | 2020-05-18 | spa |
dc.description.abstract | Bogotá is the capital of Colombia and represents the most important urban center in the country. Bogotá’s population and economic growth have accelerated exponentially in recent years and this growth has brought with it a variety of environmental impacts, including degradation of surface water quality. Government agencies have developed the water quality network of Bogotá that spans across four large rivers, including the Tunjuelo. According to measurements since 2009, water quality has changed in association with the dynamics of the city. This article utilizes a spatial and temporal analysis with multivariate statistics (Principal Components Analyses, dendograms, and Kruskal-Wallis) to propose a redesign of the Tunjuelo River water quality network. Based on these analyses, the number of monitoring stations can be reduced from nine to seven and the measurement frequency can be reduced. Together, the proposed spatial and temp | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Peña-Guzmán, C.A.; Soto, L.; Diaz, A. A Proposal for Redesigning the Water Quality Network of the Tunjuelo River in Bogotá, Colombia through a Spatio-Temporal Analysis. Resources 2019, 8, 64. | spa |
dc.identifier.doi | https://doi.org/10.3390/resources8020064 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/23294 | |
dc.relation.references | Hall, M.J.; Ellis, J.B. Water quality problems of urban areas. GeoJournal 1985, 11, 265–275. [CrossRef] | spa |
dc.relation.references | Strobl, R.O.; Robillard, P.D.; Shannon, R.D.; Day, R.L.; McDonnell, A.J. A Water Quality Monitoring Network Design Methodology for the Selection of Critical Sampling Points: Part I. Environ. Monit. Assess. 2006, 112, 137–158. [CrossRef] | spa |
dc.relation.references | Milon, J.W. Optimizing Nonpoint Source Controls in Water Quality Regulation 1. J. Am. Water Resour. Assoc. 1987, 23, 387–396. [CrossRef] | spa |
dc.relation.references | Harrington, W.; Krupnick, A.J.; Peskin, H.M. Policies for nonpoint-source water pollution control. J. Soil Water Conserv. 1985, 40, 27–32. | spa |
dc.relation.references | Loague, K.; Corwin, D.L. Point and NonPoint Source Pollution. In Encyclopedia of Hydrological Sciences; American Cancer Society: Atlanta, GA, USA, 2006; ISBN 978-0-470-84894-4. | spa |
dc.relation.references | Gaddis, E.J.B.; Voinov, A.; Seppelt, R.; Rizzo, D.M. Spatial Optimization of Best Management Practices to Attain Water Quality Targets. Water Resour. Manag. 2014, 28, 1485–1499. [CrossRef] | spa |
dc.relation.references | Todeschini, S.; Papiri, S.; Ciaponi, C. Placement Strategies and Cumulative Effects of Wet-weather Control Practices for Intermunicipal Sewerage Systems. Water Resour. Manag. 2018, 32, 2885–2900. [CrossRef] | spa |
dc.relation.references | Mishra, A.K.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 47. [CrossRef] | spa |
dc.relation.references | Brabec, E.; Schulte, S.; Richards, P.L. Impervious Surfaces and Water Quality: A Review of Current Literature and Its Implications for Watershed Planning. J. Plan. Lit. 2002, 16, 499–514. [CrossRef] | spa |
dc.relation.references | Bartram, J.; Ballance, R. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; CRC Press: Boca Raton, FA, USA, 1996; ISBN 978-0-419-22320-7 | spa |
dc.relation.references | Vélez, C.; Alfonso, L.; Sánchez, A.; Galvis, A.; Sepúlveda, G. Centinela: An early warning system for the water quality of the Cauca River. J. Hydroinf. 2014, 16, 1409–1424. [CrossRef] | spa |
dc.relation.references | Banik, B.K.; Alfonso, L.; Di Cristo, C.; Leopardi, A.; Mynett, A. Evaluation of Different Formulations to Optimally Locate Sensors in Sewer Systems. J. Water Resour. Plan. Manag. 2017, 143. [CrossRef] | spa |
dc.relation.references | D’Arcy, B.; Frost, A. The role of best management practices in alleviating water quality problems associated with diffuse pollution. Sci. Total Environ. 2001, 265, 359–367. [CrossRef] | spa |
dc.relation.references | Ellis, J.B. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [CrossRef] | spa |
dc.relation.references | Ahlman, S.; Malm, A.; Kant, H.; Svensson, G.; Karlsson, P. Modelling non-structural Best Management Practices– focus on reductions in stormwater pollution. Water Sci. Technol. 2005, 52, 9–16. [CrossRef] | spa |
dc.relation.references | Strobl, R.O.; Robillard, P.D. Network design for water quality monitoring of surface freshwaters: A review. J. Environ. Manag. 2008, 87, 639–648. [CrossRef] | spa |
dc.relation.references | Sanders, T.G. Design of Networks for Monitoring Water Quality; Water Resources Publication: Littleton, CO, USA, 1983; ISBN 978-0-918334-51-0. | spa |
dc.relation.references | Chacon-Hurtado, J.C.; Alfonso, L.; Solomatine, D.P. Rainfall and streamflow sensor network design: A review of applications, classification, and a proposed framework. Hydrol. Earth Syst. Sci. 2017, 21, 3071–3091. [CrossRef] | spa |
dc.relation.references | Chen, Q.; Wu, W.; Blanckaert, K.; Ma, J.; Huang, G. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. J. Environ. Manag. 2012, 110, 116–124. [CrossRef] | spa |
dc.relation.references | . Ongley, E.D.; Ordoiiez, E.B. Redesign and Modernization of the Mexican Water Quality Monitoring Network. Water Int. 1997, 22, 187–194. [CrossRef] | spa |
dc.relation.references | Alfonso, L.; Lobbrecht, A.; Price, R. Optimization of water level monitoring network in polder systems using information theory. Water Resour. Res. 2010, 46. [CrossRef] | spa |
dc.relation.references | Alfonso, L.; Lobbrecht, A.; Price, R. Information theory–based approach for location of monitoring water level gauges in polders. Water Resour. Res. 2010, 46. [CrossRef] | spa |
dc.relation.references | Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [CrossRef] | spa |
dc.relation.references | Tirsch, F.S.; Male, J.W. River basin water quality monitoring network design: Options for reaching water quality goals. In Proceedings of the Twentieth Annual Conference of American Water Resources Associations, Middleburg, VA, USA, December 1984; American Water Resources Association: Middleburg, VA, USA, 1984; pp. 149–156 | spa |
dc.relation.references | Maasdam, R.; Smith, D.G. New Zealand’s National River Water Quality Network 2. Relationships between physico-chemical data and environmental factors. N. Z. J. Mar. Freshw. Res. 1994, 28, 37–54. [CrossRef] | spa |
dc.relation.references | Alfonso, L.; Ridolfi, E.; Gaytan-Aguilar, S.; Napolitano, F.; Russo, F. Ensemble Entropy for Monitoring Network Design. Entropy 2014, 16, 1365–1375. [CrossRef] | spa |
dc.relation.references | . Karamouz, M.; Karimi, M.; Kerachian, R. Design of Water Quality Monitoring Network for River Systems. In Proceedings of the World Water and Environmental Resources Congress, Salt Lake City, UT, USA, 27 June–1 July 2004. | spa |
dc.relation.references | Peña-Guzmán, C.; Balaguera, P.; Hernandez, N.; Sierra, R. Redesign of Water Quality Network for the Urban Rivers in Salitre in Bogotá, Colombia, Using an Artificial Neural Network. In Proceedings of the New Trends in Urban Drainage Modelling, Palermo, Italy, September 2019; Mannina, G., Ed.; Springer International Publishing: Palermo, Italy, 2019; pp. 915–919. | spa |
dc.relation.references | Beveridge, D.; St-Hilaire, A.; Ouarda, T.B.M.J.; Khalil, B.; Conly, F.M.; Wassenaar, L.I.; Ritson-Bennett, E. A geostatistical approach to optimize water quality monitoring networks in large lakes: Application to Lake Winnipeg. J. Gt. Lakes Res. 2012, 38, 174–182. [CrossRef] | spa |
dc.relation.references | Karamouz, M.; Kerachian, R.; Akhbari, M.; Hafez, B. Design of River Water Quality Monitoring Networks: A Case Study. Environ. Model. Assess. 2008, 14, 705. [CrossRef] | spa |
dc.relation.references | Chang, C.-L.; Lin, Y.-T. A water quality monitoring network design using fuzzy theory and multiple criteria analysis. Environ. Monit. Assess. 2014, 186, 6459–6469. [CrossRef] | spa |
dc.relation.references | Cetinkaya Cem, P.; Harmancioglu Nilgun, B. Assessment of Water Quality Sampling Sites by a Dynamic Programming Approach. J. Hydrol. Eng. 2012, 17, 305–317. [CrossRef] | spa |
dc.relation.references | Varekar, V.; Karmakar, S.; Jha, R.; Ghosh, N.C. Design of sampling locations for river water quality monitoring considering seasonal variation of point and diffuse pollution loads. Environ. Monit. Assess. 2015, 187, 376. [CrossRef] | spa |
dc.relation.references | Peña-Guzmán, C.; Melgarejo, J.; Prats, D. El ciclo urbano del agua en Bogotá, Colombia: estado actual y desafíos para la sostenibilidad. Tecnol. Cienc. Agua 2016, 7, 57–71. | spa |
dc.relation.references | Nguyen, T.H.; Helm, B.; Hettiarachchi, H.; Caucci, S.; Krebs, P. The selection of design methods for river water quality monitoring networks: A review. Environ. Earth Sci. 2019, 78, 96. [CrossRef] | spa |
dc.relation.references | Khalil, B.; Ouarda, T.B.M.J. Statistical approaches used to assess and redesign surface water-quality-monitoring networks. J. Environ. Monit. 2009, 11, 1915–1929. [CrossRef] | spa |
dc.relation.references | Khalil, B.; Ou, C.; Proulx-McInnis, S.; St-Hilaire, A. Statistical Analyses of the Adequacy of the Surface Water Quality Network in Saskatchewan; Saskatchewan Department of the Environment: Québec, QC, Canada, 2011; p. 333. | spa |
dc.relation.references | Giridharan, L.; Venugopal, T.; Jayaprakash, M. Assessment of Water Quality Using Chemometric Tools: A Case Study of River Cooum, South India. Arch. Environ. Contam. Toxicol. 2009, 56, 654–669. [CrossRef] [PubMed] | spa |
dc.relation.references | Boyacioglu, H.; Boyacioglu, H. Surface Water Quality Assessment by Environmetric Methods. Environ. Monit. Assess. 2007, 131, 371–376. [CrossRef] | spa |
dc.relation.references | Langfelder, P.; Zhang, B.; Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008, 24, 719–720. [CrossRef] [PubMed] | spa |
dc.relation.references | Mei, K.; Zhu, Y.; Liao, L.; Dahlgren, R.; Shang, X.; Zhang, M. Optimizing water quality monitoring networks using continuous longitudinal monitoring data: A case study of Wen-Rui Tang River, Wenzhou, China. J. Environ. Monit. 2011, 13, 2755–2762. [CrossRef] [PubMed] | spa |
dc.relation.references | Pinto, C.C.; Calazans, G.M.; Oliveira, S.C. Assessment of spatial variations in the surface water quality of the Velhas River Basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environ. Monit. Assess. 2019, 191, 164. [CrossRef] [PubMed] | spa |
dc.relation.references | Mavukkandy, M.O.; Karmakar, S.; Harikumar, P.S. Assessment and rationalization of water quality monitoring network: A multivariate statistical approach to the Kabbini River (India). Environ. Sci. Pollut. Res. 2014, 21, 10045–10066. [CrossRef] [PubMed] | spa |
dc.relation.references | Alves, J.D.P.H.; Fonseca, L.C.; Chielle, R.D.S.A.; Macedo, L.C.B. Monitoring water quality of the Sergipe River basin: An evaluation using multivariate data analysis. RBRH 2018, 23. [CrossRef] | spa |
dc.relation.references | Calazans, G.M.; Pinto, C.C.; da Costa, E.P.; Perini, A.F.; Oliveira, S.C. The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin, Brazil. Environ. Monit. Assess. 2018, 190, 491. [CrossRef] | spa |
dc.relation.references | El Gammal, H.A.A. Statistical analysis of water quality monitoring network case Study: Gharbia drainage catchments area. Adv. Environ. Biol. 2016, 10, 297–305 | spa |
dc.relation.references | Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [CrossRef] | spa |
dc.relation.references | Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [CrossRef] | spa |
dc.relation.references | Khalil, B.; Ouarda, T.B.M.J.; St-Hilaire, A. A statistical approach for the assessment and redesign of the Nile Delta drainage system water-quality-monitoring locations. J. Environ. Monit. 2011, 13, 2190–2205. [CrossRef] | spa |
dc.relation.references | Guigues, N.; Desenfant, M.; Hance, E. Combining multivariate statistics and analysis of variance to redesign a water quality monitoring network. Environ. Sci. Process. Impacts 2013, 15, 1692–1705. [CrossRef] [PubMed] | spa |
dc.relation.references | Pejman, A.H.; Bidhendi, G.R.N.; Karbassi, A.R.; Mehrdadi, N.; Bidhendi, M.E. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int. J. Environ. Sci. Technol. 2009, 6, 467–476. [CrossRef] | spa |
dc.relation.references | Peña-Guzman, C.; Zamora, D. Determinación de las concentraciones de SST, DBO5, NT, PT, SAAM, GyA en el río Tunjuelo, Bogotá D.C. a través de modelos de redes neuronales tipo feed-forward. In Manejo del Riesgo en la Gestión del Agua: Retos Ante Los Riesgos Ambientales en el Ciclo del Agua, Justicia Ambiental y Conflictos; Universidad del Valle: Cali, Colombia, 2016; p. 440. ISBN 978-958-765-287-1. | spa |
dc.relation.references | Ogwueleka, T.C. Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria. Environ. Monit. Assess. 2015, 187, 137. [CrossRef] [PubMed] | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | redesigning | spa |
dc.subject.keyword | water quality network | spa |
dc.subject.keyword | Tunjuelo River | spa |
dc.title | A proposal for redesigning the water quality network of the Tunjuelo river in Bogotá, Colombia through a spatio-temporal analysis | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |