Propuesta metodológica para predecir la resistencia a la compresión de un cilindro de concreto de acuerdo con la norma del sector de la construcción mediante el uso de las TIC
dc.contributor.advisor | Guzmán Lozano, Jesús Augusto | spa |
dc.contributor.author | Silva Vanegas, Juan Sebastian | spa |
dc.contributor.author | Zapata Cortés, Diego Giancarlo | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001287907 | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=T9lhgskAAAAJ&hl=es | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-07-28T15:24:44Z | spa |
dc.date.available | 2020-07-28T15:24:44Z | spa |
dc.date.issued | 2020-07-27 | spa |
dc.description | En la actualidad, para saber la resistencia a la compresión del concreto se deben evaluar especímenes de concreto y mediante una normativa existente, conocerla en cada edad. Las estructuras son diseñadas con una resistencia a la compresión del concreto que se espera a los 28 días, pero en muchas ocasiones se requiere conocerla antes de que se cumpla esa edad por razones técnicas y económicas en el proyecto. Para poder saber la resistencia sin fallar los especímenes a las diferentes edades, se entrenan redes neuronales y se crea una herramienta predictiva con la cual, sabiendo la resistencia a 3 días o a 7 días, se puede predecir con gran exactitud, las resistencias a las diferentes edades como son; 14 días, 28 días y 56 días. Con esta herramienta, se pueden saber dichas resistencias y tomar decisiones técnicas y económicas que favorecen al proyecto sin poner el riesgo la integridad estructural del mismos. | spa |
dc.description.abstract | Currently, to know the compressive strength of concrete, concrete specimens must be evaluated and, through existing regulations, known at each age. The structures are designed with a compressive strength of concrete that is expected at 28 days, but in many occasions it is required to know it before that age is reached for technical and economic reasons in the project. In order to know the resistance without failing the specimens at the different ages, neural networks are trained and a predictive tool is created with which, knowing the resistance at 3 days or 7 days, it is possible to predict with great accuracy, the resistance to the different ages as they are; 14 days, 28 days and 56 days. With this tool, you can know these resistances and make technical and economic decisions that favor the project without putting the structural integrity of the project at risk. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero de Telecomunicaciones | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Silva, S., & Zapata, G. (2020).Propuesta metodológica para predecir la resistencia a la compresión de un cilindro de concreto de acuerdo con la norma del sector de la construcción mediante el uso de las TIC [Trabajo de pregado Ingeniería de Telecomunicaciones] Universidad Santo Tomás. Bogotá, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/28567 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería de Telecomunicaciones | spa |
dc.publisher.program | Pregrado Ingeniería de Telecomunicaciones | spa |
dc.relation.references | Jordan, “済無No Title No Title,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013, doi: 10.1017/CBO9781107415324.004. | spa |
dc.relation.references | “(No Title).” https://www.researchgate.net/profile/Adrian_Will/publication/228661525_Uso_de_redes_neuronales_y_ANFIS_para_predecir_la_resistencia_uniaxial_a_compresion_de_hormigones_de_alta_resistencia/links/0c9605331c9d7c46cd000000.pdf (accessed Apr. 12, 2020). | spa |
dc.relation.references | NSR-10, “NSR-10 Requisitos generales de diseño y construcción sismo resistente,” Nsr-10, vol. Titulo A, p. 186, 2010. | spa |
dc.relation.references | “Tipos de investigación: Descriptiva, Exploratoria y Explicativa.” https://noticias.universia.cr/educacion/noticia/2017/09/04/1155475/tipos-investigacion-descriptiva-exploratoria-explicativa.html (accessed Apr. 16, 2020). | spa |
dc.relation.references | “Qué es SCRUM – Proyectos Ágiles.” https://proyectosagiles.org/que-es-scrum/ (accessed Apr. 16, 2020). | spa |
dc.relation.references | G. Rivera, “Capítulo 6. Resistencia del concreto,” Concreto simple, no. 6, pp. 121–153, 2006, [Online]. Available: ftp://ftp.unicauca.edu.co/cuentas/geanrilo/docs/FIC y GEOTEC SEM 2 de 2010/Tecnologia del Concreto - PDF ver. 2009/Cap. 06 - Resistencia.pdf. | spa |
dc.relation.references | I. N. de Vías, “Máquina de ensayo –,” Ens. Tracc. Indirect. Cilindros Norm. Concreto, vol. 411, pp. 1–5, 2007. | spa |
dc.relation.references | Matlab Book Editors, “Mastering Machine Learning A Step-by-Step Guide with MATLAB,” p. 22, 2018. | spa |
dc.relation.references | “Statistics and Machine Learning Toolbox - MATLAB.” https://la.mathworks.com/products/statistics.html#machine-learning (accessed Apr. 01, 2020). | spa |
dc.relation.references | A. Lozano, “MARTILLO SCHMIDT (ESCLERÓMETRO).” | spa |
dc.relation.references | “Desarrollo de un modelo de redes neuronales esarrollo de un modelo de redes neuronales artificiales para predecir la resistencia a la compresiÛn rtificiales para predecir la resistencia a la compresiÛn y la resistividad elÈctrica del concreto.” https://repositorio.unal.edu.co/bitstream/handle/unal/28787/14771-44391-1-PB.pdf?sequence=1&isAllowed=y (accessed Jul. 03, 2020). | spa |
dc.relation.references | P. Folino, A. Will, F. Flores, and W. Diaz, “Uso de redes neuronales y ANFIS para predecir la resistencia uniaxial a compresión de hormigones de alta resistencia SUPERCONCRETE (SUstainability-driven international/intersectoral Partnership for Education and Research on modelling next generation CONCRETE) View project Acoustics, noise control View project.” Accessed: Apr. 12, 2020. [Online]. Available: https://www.researchgate.net/publication/228661525. | spa |
dc.relation.references | “¿Qué es la inteligencia artificial (IA)? - MATLAB & Simulink.” https://la.mathworks.com/discovery/artificial-intelligence.html (accessed Apr. 15, 2020). | spa |
dc.relation.references | L. Vokorokos, J. Mihalov, and L. Lescisin, “Possibilities of depth cameras and ultra wide band sensor,” in 2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Jan. 2016, pp. 57–61, doi: 10.1109/SAMI.2016.7422982. | spa |
dc.relation.references | “Machine Learning: Tres cosas que es necesario saber - MATLAB & Simulink.” https://la.mathworks.com/discovery/machine-learning.html (accessed Apr. 15, 2020). | spa |
dc.relation.references | “¿Qué es una red neuronal? - MATLAB & Simulink.” https://la.mathworks.com/discovery/neural-network.html (accessed Apr. 16, 2020) | spa |
dc.relation.references | “Funciones en el modelo de Neurona Artificial.” http://www.redes-neuronales.com.es/tutorial-redes-neuronales/funciones-de-las-neuronas-artificiales.htm (accessed Jul. 17, 2020) | spa |
dc.relation.references | “Regresión - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/stats/regression-and-anova.html (accessed Apr. 16, 2020). | spa |
dc.relation.references | “MATLAB - Wikipedia, la enciclopedia libre.” https://es.wikipedia.org/wiki/MATLAB (accessed Apr. 16, 2020). | spa |
dc.relation.references | Ministerio de Ambiente Vivienda y Desarrollo Territorial, “Reglamento Colombiano de Construccion Sismo Resistente.,” p. 406, 1997, [Online]. Available: https://www.culturarecreacionydeporte.gov.co/sites/default/files/reglamento_construccion_sismo_resistente.pdf. | spa |
dc.relation.references | “(No Title).” https://www.idrd.gov.co/sitio/idrd/sites/default/files/imagenes/3titulo-c-nsr-100.pdf (accessed Apr. 16, 2020). | spa |
dc.relation.references | “Historias de Usuario, escritura, definicion y ejemplos — SCRUM MÉXICO.” https://www.scrum.mx/informate/historias-de-usuario (accessed Apr. 16, 2020). | spa |
dc.relation.references | “Prueba de resistencia a la compresión del concreto | CivilGeeks.com.” https://civilgeeks.com/2017/08/24/prueba-resistencia-la-compresion-del-concreto/ (accessed Apr. 16, 2020). | spa |
dc.relation.references | Jesús David Osorio, “Resistencias del concreto | ARGOS 360.” https://www.360enconcreto.com/blog/detalle/resistencia-mecanica-del-concreto-y-compresion (accessed Mar. 31, 2020). | spa |
dc.relation.references | “Fit Data with a Shallow Neural Network - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/gs/fit-data-with-a-neural-network.html (accessed Apr. 16, 2020) | spa |
dc.relation.references | “Train Regression Models in Regression Learner App - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/stats/train-regression-models-in-regression-learner-app.html (accessed Apr. 16, 2020). | spa |
dc.relation.references | “Open Network/Data Manager - MATLAB nntool - MathWorks América Latina.” https://la.mathworks.com/help/deeplearning/ref/nntool.html (accessed Apr. 16, 2020). | spa |
dc.relation.references | C. M. Bishop and C. M. Roach, “Fast curve fitting using neural networks,” Rev. Sci. Instrum., vol. 63, no. 10, pp. 4450–4456, 1992, doi: 10.1063/1.1143696. | spa |
dc.relation.references | S. Ekici, F. Unal, and U. Ozleyen, “Comparison of different regression models to estimate fault location on hybrid power systems,” IET Gener. Transm. Distrib., vol. 13, no. 20, pp. 4756–4765, Oct. 2019, doi: 10.1049/iet-gtd.2018.6213. | spa |
dc.relation.references | “Simulate dynamic system - MATLAB sim - MathWorks América Latina.” https://la.mathworks.com/help/simulink/slref/sim.html (accessed Apr. 16, 2020). | spa |
dc.relation.references | “Predict responses using ensemble of bagged decision trees - MATLAB - MathWorks América Latina.” https://la.mathworks.com/help/stats/compacttreebagger.predict.html (accessed Apr. 16, 2020). | spa |
dc.relation.references | “App Designer - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/matlab/app-designer.html (accessed Apr. 16, 2020). | spa |
dc.relation.references | R. Marciniak, “Propuesta metodológica para el diseño del proyecto de curso virtual: aplicación piloto,” Apertura, vol. 9, no. 27, pp. 74–95, 2017, doi: 10.18381/Ap.v9n2.991. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Machine Learning | spa |
dc.subject.keyword | IA | spa |
dc.subject.keyword | Concrete | spa |
dc.subject.keyword | Prediction | spa |
dc.subject.lemb | Aprendizaje de maquina | spa |
dc.subject.lemb | Concreto | spa |
dc.subject.lemb | Predicción | spa |
dc.subject.lemb | Tecnología | spa |
dc.subject.proposal | Resistencia | spa |
dc.subject.proposal | Algoritmo | spa |
dc.subject.proposal | Red Neuronal | spa |
dc.subject.proposal | NSR10 | spa |
dc.subject.proposal | Concreto | spa |
dc.subject.proposal | Predicción | spa |
dc.subject.proposal | IA | spa |
dc.title | Propuesta metodológica para predecir la resistencia a la compresión de un cilindro de concreto de acuerdo con la norma del sector de la construcción mediante el uso de las TIC | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2020juansilva.pdf
- Tamaño:
- 2.07 MB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- Carta_aprobacion Sebastian Silva y Giancarlos Zapata .pdf
- Tamaño:
- 170.73 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta aprobación facultad

- Nombre:
- Carta_autorizacion_autoarchivo estudiantes.pdf
- Tamaño:
- 118.02 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta autorización estudiantes
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: