Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study
dc.contributor.author | Ramírez-Vélez, Robinson | spa |
dc.contributor.author | Pérez-Sousa, Miguel Ángel | spa |
dc.contributor.author | González-Ruíz, Katherine | spa |
dc.contributor.author | Cano-Gutierrez, Carlos A. | spa |
dc.contributor.author | Schmidt-RioValle, Jacqueline | spa |
dc.contributor.author | Correa-Rodríguez, María | spa |
dc.contributor.author | Izquierdo, Mikel | spa |
dc.contributor.author | Romero-García, Jesús Astolfo | spa |
dc.contributor.author | Campos-Rodríguez, Adriana Yolanda | spa |
dc.contributor.author | Triana-Reina, Héctor Reynaldo | spa |
dc.contributor.author | González-Jiménez, Emilio | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001403792 | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000242500 | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001358309 | spa |
dc.contributor.googlescholar | https://scholar.google.com.co/citations?user=mmkjGaUAAAAJ&hl=en | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=YJnsauoAAAAJ&hl=es | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=c2h3x9UAAAAJ&hl=es | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=Sg7jLR0AAAAJ&hl=es | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=7rKW9XcAAAAJ&hl=es | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=n7Q2xhUAAAAJ&hl=es | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=fNfgcWAAAAAJ&hl=ja | spa |
dc.contributor.orcid | https://orcid.org/0000-0003-4392-6850 | spa |
dc.contributor.orcid | https://orcid.org/0000-0001-5680-7880 | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-1506-4272 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-05-19T17:12:34Z | spa |
dc.date.available | 2020-05-19T17:12:34Z | spa |
dc.date.issued | 2020-03-19 | spa |
dc.description.abstract | This study evaluated the predictive ability of 11 obesity- and lipid-related parameters, including body mass index (BMI), waist circumference (WC), waist-to-height ratio (WtHR), body roundness index (BRI), “A” body-shape index (ABSI), conicity index (C), visceral adiposity index (VAI), triglyceride-to-glucose fasting index (TyG), triglyceride-to-glucose fasting related to BMI (TyG-BMI), triglyceride-to-glucose fasting related to WC (TyG-WC), and triglyceride-to-glucose fasting related to WtHR (TyG-WtHR), to identify patients from an elderly Colombian population with a high risk of prediabetes according to the 2016 American Diabetes Association criteria. The data were obtained from the 2015 Colombian Health and Wellbeing and Aging Survey. A total of 3307 elderly Colombian individuals (aged over 60 years) were included. Anthropometric data, fasting plasma glucose, blood lipid profiles, family history, and health-related behaviors were assessed, and prediabetes was defined as a fasting plasma glucose of 100 to 125 mg/dL. The areas under the receiver operating characteristic (ROC) curves (AUCs) were calculated for each anthropometric indicator, using the prediabetes classification to identify their sensitivity and specificity, and these indicated that the prevalence of prediabetes was 25.3% in this population. After adjusting for potential confounding factors, the TyG index was strongly associated with the odds of having prediabetes in both sexes, and multivariate logistic regression analysis showed that the ORs for prediabetes increased across quartiles (p < 0.001). The TyG index was best able to identify prediabetes in either sex (AUC and optimal cut-o = 0.700 and 8.72, and 0.695 and 8.92 for men and women, respectively), suggestingthat compared to the other parameters, the TyG index has the best discriminative power to predict prediabetes in the whole population. Thus, we propose the TyG index be used as a complementary marker for assessing prediabetes in older adults. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | http://hdl.handle.net/11634/23303 | |
dc.relation.annexed | http://unidadinvestigacion.usta.edu.co | spa |
dc.relation.references | Wilson, M.L. Prediabetes. Nurs. Clin. N. Am. 2017, 52, 665–677. [CrossRef] [PubMed] | spa |
dc.relation.references | Nasr, G.; Sliem, H. Silent myocardial ischemia in prediabetics in relation to insulin resistance. J. Cardiovasc. Dis. Res. 2010, 1, 116–121. [CrossRef] [PubMed] | spa |
dc.relation.references | Levitan, E.B.; Song, Y.; Ford, E.S.; Liu, S. Is Nondiabetic Hyperglycemia a Risk Factor for Cardiovascular Disease? Arch. Intern. Med. 2004, 164, 2147. [CrossRef] [PubMed] | spa |
dc.relation.references | Kurihara, O.; Takano, M.; Yamamoto, M.; Shirakabe, A.; Kimata, N.; Inami, T.; Kobayashi, N.; Munakata, R.; Murakami, D.; Inami, S.; et al. Impact of prediabetic status on coronary atherosclerosis: A multivessel angioscopic study. Diabetes Care 2013, 36, 729–733. [CrossRef] [PubMed] | spa |
dc.relation.references | Huang, Y.; Cai, X.; Mai,W.; Li, M.; Hu, Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ 2016, 355, i5953. [CrossRef] | spa |
dc.relation.references | World Health Organization. Global Status Report on Noncommunicable Diseases 2014;World Health Organization: Geneva, Switzerland, 2014; ISBN 9789241564854. | spa |
dc.relation.references | Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [CrossRef] | spa |
dc.relation.references | Buysschaert, M.; Bergman, M. Definition of Prediabetes. Med. Clin. N. Am. 2011, 95, 289–297. [CrossRef] | spa |
dc.relation.references | Yip,W.; Sequeira, I.; Plank, L.; Poppitt, S. Prevalence of Pre-Diabetes across Ethnicities: A Review of Impaired Fasting Glucose (IFG) and Impaired Glucose Tolerance (IGT) for Classification of Dysglycaemia. Nutrients 2017, 9, 1273. [CrossRef] | spa |
dc.relation.references | Gerstein, H.C.; Santaguida, P.; Raina, P.; Morrison, K.M.; Balion, C.; Hunt, D.; Yazdi, H.; Booker, L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: A systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 2007, 78, 305–312. [CrossRef] | spa |
dc.relation.references | Gu, Z.; Li, D.; He, H.;Wang, J.; Hu, X.; Zhang, P.; Hong, Y.; Liu, B.; Zhang, L.; Ji, G. Body mass index, waist circumference, and waist-to-height ratio for prediction of multiple metabolic risk factors in Chinese elderly population. Sci. Rep. 2018, 8, 385. [CrossRef] | spa |
dc.relation.references | Gu, Z.; Zhu, P.; Wang, Q.; He, H.; Xu, J.; Zhang, L.; Li, D.; Wang, J.; Hu, X.; Ji, G.; et al. Obesity and lipid-related parameters for predicting metabolic syndrome in Chinese elderly population. Lipids Health Dis. 2018, 17, 289. [CrossRef] [PubMed] | spa |
dc.relation.references | Li, R.; Li, Q.; Cui, M.; Yin, Z.; Li, L.; Zhong, T.; Huo, Y.; Xie, P. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. J. Diabetes Investig. 2018, 9, 411–418. [CrossRef] [PubMed] | spa |
dc.relation.references | Ramírez-Vélez, R.; Correa-Bautista, J.E.; García-Hermoso, A.; Cano, C.A.; Izquierdo, M. Reference values for handgrip strength and their association with intrinsic capacity domains among older adults. J. Cachexia. Sarcopenia Muscle 2019, 10, 278–286. [CrossRef] [PubMed] | spa |
dc.relation.references | Gomez, F.; Corchuelo, J.; Curcio, C.-L.; Calzada, M.-T.; Mendez, F. SABE Colombia: Survey on Health, Well-Being, and Aging in Colombia—Study Design and Protocol. Curr. Gerontol. Geriatr. Res. 2016, 2016, 7910205. [CrossRef] [PubMed] | spa |
dc.relation.references | Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [CrossRef] [PubMed] | spa |
dc.relation.references | Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen,W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [CrossRef] [PubMed] | spa |
dc.relation.references | Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [CrossRef] | spa |
dc.relation.references | Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [CrossRef] | spa |
dc.relation.references | Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [CrossRef] | spa |
dc.relation.references | Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [CrossRef] | spa |
dc.relation.references | Zheng, S.; Shi, S.; Ren, X.; Han, T.; Li, Y.; Chen, Y.; Liu, W.; Hou, P.C.; Hu, Y. Triglyceride glucose-waist circumference, a novel and e ective predictor of diabetes in first-degree relatives of type 2 diabetes patients: Cross-sectional and prospective cohort study. J. Transl. Med. 2016, 14, 260. [CrossRef] [PubMed] | spa |
dc.relation.references | Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [CrossRef] [PubMed] | spa |
dc.relation.references | Chamberlain, J.J.; Rhinehart, A.S.; Shaefer, C.F.; Neuman, A. Diagnosis and Management of Diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann. Intern. Med. 2016, 164, 542. [CrossRef] [PubMed] | spa |
dc.relation.references | Claridge-Chang, A.; Assam, P.N. Estimation statistics should replace significance testing. Nat. Methods 2016, 13, 108–109. [CrossRef] | spa |
dc.relation.references | Salgado, J.F. Transforming the Area under the Normal Curve (AUC) into Cohen’s d, Pearson’s r pb, Odds-Ratio, and Natural Log Odds-Ratio: Two Conversion Tables. Eur. J. Psychol. Appl. Leg. Context 2018, 10, 35–47. [CrossRef] | spa |
dc.relation.references | Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Mahwah, NJ, USA, 1988; ISBN 0805802835. | spa |
dc.relation.references | McHugh, M.L. The chi-square test of independence. Biochem. Med. 2013, 23, 143–149. [CrossRef] | spa |
dc.relation.references | IDF Diabetes Atlas. Available online: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/ 13-diabetes-atlas-seventh-edition.html (accessed on 20 August 2019). | spa |
dc.relation.references | Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: The Di@bet.es Study. Diabetologia 2012, 55, 88–93. [CrossRef] | spa |
dc.relation.references | Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and Trends in Diabetes Among Adults in the United States, 1988–2012. JAMA 2015, 314, 1021. [CrossRef] | spa |
dc.relation.references | Vilanova, M.B.; Falguera, M.; Marsal, J.R.; Rubinat, E.; Alcubierre, N.; Castelblanco, E.; Granado-Casas, M.; Miró, N.; Molló, À.; Mata-Cases, M.; et al. Prevalence, clinical features and risk assessment of pre-diabetes in Spain: Mata-Cases, M.; Franch-Nadal, J.; Mauricio, D. Prevalence, clinical features and risk assessment of pre-diabetes in Spain: The prospective Mollerussa cohort studythe prospective Mollerussa cohort study. BMJ open 2017, 7, e015158. [CrossRef] | spa |
dc.relation.references | Barceló, A.; Gregg, E.W.; Pastor-Valero, M.; Robles, S.C. Waist circumference, BMI and the prevalence of self-reported diabetes among the elderly of the United States and six cities of Latin America and the Caribbean. Diabetes Res. Clin. Pract. 2007, 78, 418–427. [CrossRef] | spa |
dc.relation.references | Yang, X.Y.; Zhang, M.; Luo, X.P.; Wang, J.J.; Yin, L.; Pang, C.; Wang, G.A.; Shen, Y.X.; Wu, D.T.; Zhang, L.; et al. Body mass index, waist circumference and waist-to-height ratio associated with the incidence of type 2 diabetes mellitus: A cohort study. Zhonghua Yu Fang Yi Xue Za Zhi 2016, 50, 328–333. [PubMed] | spa |
dc.relation.references | Fujita, M.; Sato, Y.; Nagashima, K.; Takahashi, S.; Hata, A. Predictive Power of a Body Shape Index for Development of Diabetes, Hypertension, and Dyslipidemia in Japanese Adults: A Retrospective Cohort Study. PLoS ONE 2015, 10, e0128972. [CrossRef] [PubMed] | spa |
dc.relation.references | Hardy, D.S.; Stallings, D.T.; Garvin, J.T.; Xu, H.; Racette, S.B. Best anthropometric discriminators of incident type 2 diabetes among white and black adults: A longitudinal ARIC study. PLoS ONE 2017, 12, e0168282. [CrossRef] [PubMed] | spa |
dc.relation.references | Qiu, M.; Shen,W.; Song, X.; Ju, L.; Tong,W.;Wang, H.; Zheng, S.; Jin, Y.;Wu, Y.;Wang,W.; et al. E ects of Prediabetes Mellitus Alone or Plus Hypertension on Subsequent Occurrence of Cardiovascular Disease and Diabetes Mellitus. Hypertension 2015, 65, 525–530. [CrossRef] [PubMed] | spa |
dc.relation.references | Nwose, E.U.; Richards, R.S.; Bwititi, P.T.; Igumbor, E.O.; Oshionwu, E.J.; Okolie, K.; Onyia, I.C.; Pokhrel, A.; Gyawali, P.; Okuzor, J.N.; et al. Prediabetes and cardiovascular complications study (PACCS): International collaboration 4 years’ summary and future direction. BMC Res. Notes 2017, 10, 730. [CrossRef] [PubMed] | spa |
dc.relation.references | Rodriguez-Segade, S.; Rodriguez, J.; Camiña, F.; Sanmartín-Portas, L.; Gerpe-Jamardo, J.; Pazos-Couselo, M.; García-López, J.M.; Alonso-Sampedro, M.; González-Quintela, A.; Gude, F. Prediabetes defined by HbA1c and by fasting glucose: Di erences in risk factors and prevalence. Acta Diabetol. 2019, 56, 1023–1030. [CrossRef] [PubMed] | spa |
dc.relation.references | Er, L.-K.; Wu, S.; Chou, H.-H.; Hsu, L.-A.; Teng, M.-S.; Sun, Y.-C.; Ko, Y.-L. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE 2016, 11, e0149731. [CrossRef] | spa |
dc.relation.references | Spruijt-Metz, D.; O’Reilly, G.A.; Cook, L.; Page, K.A.; Quinn, C. Behavioral contributions to the pathogenesis of type 2 diabetes. Curr. Diab. Rep. 2014, 14, 475. [CrossRef] | spa |
dc.relation.references | Zhang, S.; Du, T.; Zhang, J.; Lu, H.; Lin, X.; Xie, J.; Yang, Y.; Yu, X. The triglyceride and glucose index (TyG) is an e ective biomarker to identify nonalcoholic fatty liver disease. Lipids Health Dis. 2017, 1, 15. [CrossRef] | spa |
dc.relation.references | Lee, E.Y.; Yang, H.K.; Lee, J.; Kang, B.; Yang, Y.; Lee, S.H.; Ko, S.H.; Ahn, Y.B.; Cha, B.Y.; Yoon, K.H.; et al. Triglyceride glucose index, a marker of insulin resistance, is associated with coronary artery stenosis in asymptomatic subjects with type 2 diabetes. Lipids Health Dis. 2016, 15, 155. [CrossRef] | spa |
dc.relation.references | Du, T.; Yuan, G.; Zhang, M.; Zhou, X.; Sun, X.; Yu, X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc. Diabetol. 2014, 13, 146. [CrossRef] [PubMed] | spa |
dc.relation.references | Lambrinoudaki, I.; Kazani, M.V.; Armeni, E.; Georgiopoulos, G.; Tampakis, K.; Rizos, D.; Augoulea, A.; Kaparos, G.; Alexandrou, A.; Stamatelopoulos, K. The TyG Index as a Marker of Subclinical Atherosclerosis and Arterial Sti ness in Lean and Overweight Postmenopausal Women. Heart Lung Circ. 2018, 27, 716–724. [CrossRef] [PubMed] | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Adiposity | spa |
dc.subject.keyword | Prediabetes | spa |
dc.subject.keyword | Lipids | spa |
dc.subject.keyword | Anthropometric measure | spa |
dc.subject.keyword | Elderly | spa |
dc.title | Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |