La geoinformática en la gestión de cuencas hidrográficas.

dc.contributor.advisorSierra Parada, Ronal Jackson
dc.contributor.authorVelasco Quitian, Laura Valentina
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-07-25T15:42:03Z
dc.date.available2022-07-25T15:42:03Z
dc.date.issued2022-07-22
dc.descriptionLa cuenca hidrográfica es entendida como “una parte de la tierra que recibe precipitaciones que fluyen hacia la misma dirección de salida debido a su topografía” (Asgari, 2021) por lo que es posible medir la cantidad de agua disponible de las precipitaciones, la cuenca se ha convertido en una unidad para la gestión del abastecimiento de agua (Asgari, 2021), funcionando como “una unidad básica para el análisis ambiental, ya que permite conocer y evaluar sus diversos componentes y los procesos e interacciones que en ella ocurren” (Braz et al., 2020) siendo objeto de ordenamiento y planificación ambiental y territorial. Existe una diversidad de aspectos que deben ser tratados en la organización y gestión de una cuenca hidrográfica, como el clima, la geología, geomorfología, hidrología superficial y subterránea, vegetación, fauna, paisaje, socioeconomía, etc., por lo cual es pertinente integrar la geoinformática debido a que es la “rama del conocimiento que se aboca al estudio de la naturaleza y estructura de los datos e información geográfica o espacial, al desarrollo y aplicación de procedimientos, métodos y técnicas para su captura o levantamiento, al almacenamiento, procesamiento, graficación y comunicación de la más diversa información espacial” (Universidad Autónoma de Ciudad Juárez). Por lo que es importante estudiar el uso de la geoinformática en la gestión de cuencas hidrográficas para la toma de decisiones que influyen a nivel económico, ambiental y social.spa
dc.description.abstractThe watershed is understood as "a part of the land that receives precipitation that flows towards the same direction of exit due to its topography" (Asgari, 2021) so it is possible to measure the amount of water available from precipitation, the watershed has become a unit for the management of water supply (Asgari, 2021), functioning as "a basic unit for environmental analysis, since it allows to know and evaluate its various components and the processes and interactions that occur in it" (Braz et al., 2020) and is the object of environmental and territorial planning. There is a diversity of aspects that must be addressed in the organization and management of a river basin, such as climate, geology, geomorphology, surface and subway hydrology, vegetation, fauna, landscape, socioeconomics, etc., It is therefore pertinent to integrate geoinformatics because it is the "branch of knowledge that focuses on the study of the nature and structure of geographic or spatial data and information, the development and application of procedures, methods and techniques for their capture or survey, storage, processing, graphing and communication of the most diverse spatial information" (Universidad Autónoma de Ciudad Juárez). Therefore, it is important to study the use of geoinformatics in watershed management for making decisions that influence the economic, environmental and social levels.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationVelasco Quitian, L. V. (2004). La geoinformática en la gestión de cuencas hidrográficas. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/46042
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.relation.referencesAbd El-Hamid, H. T., Caiyong, W., Yun, Z., & El-Zeiny, A. M. (2022). Environmental hazards of land use/land cover dynamics using data observation techniques and GIS: case study of Guyuan watershed, China. Arabian Journal of Geosciences, 15(5). https://doi.org/10.1007/s12517-022-09655-6spa
dc.relation.referencesAggarwal, M., Saravanan, S., Jacinth Jennifer, J., & Abijith, D. (2019). Delineation of groundwater potential zones for hard rock region in karnataka using AHP and GIS. En Advances in Remote Sensing and Geo Informatics Applications (pp. 315–317). Springer International Publishingspa
dc.relation.referencesAsgari, M. (2021). A critical review on scale concept in GIS-based watershed management studies. Spatial Information Research, 29(3), 417–425. https://doi.org/10.1007/s41324-020-00361-7spa
dc.relation.referencesBaez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011spa
dc.relation.referencesBalasubramani, K., Gomathi, M., Bhaskaran, G., & Kumaraswamy, K. (2019). GIS-based spatial multi-criteria approach for characterization and prioritization of micro-watersheds: a case study of semi-arid watershed, South India. Applied Geomatics, 11(3), 289–307. https://doi.org/10.1007/s12518-019-00261-yspa
dc.relation.referencesBalasubramani, K., Veena, M., Kumaraswamy, K., & Saravanabavan, V. (2015). Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (RUSLE) model through GIS. Modeling Earth Systems and Environment, 1(3). https://doi.org/10.1007/s40808-015-0015-4spa
dc.relation.referencesBlöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., … Zhang, Y. (2019). Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 64(10), 1141–1158. https://doi.org/10.1080/02626667.2019.1620507spa
dc.relation.referencesBrito, C. S. de, Silva, R. M. da, Santos, C. A. G., Brasil Neto, R. M., & Coelho, V. H. R. (2021). Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: A case study of the Piranhas River basin, northeastern Brazil. Atmospheric Research, 250. https://doi.org/10.1016/j.atmosres.2020.105380spa
dc.relation.referencesBraz, A. M., Garcia, P. H. M., Pinto, A. L., Chávez, E. S., & Oliveira, I. J. de. (2020). Manejo integrado de cuencas hidrográficas: posibilidades y avances en los análisis de uso y cobertura de la tierra. Cuadernos de Geografía Revista Colombiana de Geografía, 29(1), 69–85. https://doi.org/10.15446/rcdg.v29n1.76232spa
dc.relation.referencesCamici, S., Ciabatta, L., Massari, C., & Brocca, L. (2018). How reliable are satellite precipitation estimates for driving hydrological models: A verification study over the Mediterranean area. Journal of Hydrology, 563, 950–961. https://doi.org/10.1016/j.jhydrol.2018.06.067spa
dc.relation.referencesChim, K., Tunnicliffe, J., Shamseldin, A. Y., & Bun, H. (2021). Assessment of land use and climate change effects on hydrology in the upper Siem Reap River and Angkor Temple Complex, Cambodia. Environmental Development, 39. https://doi.org/10.1016/j.envdev.2021.100615spa
dc.relation.referencesChowdhury, M., Hasan, M. E., & Abdullah-Al-Mamun, M. M. (2020). Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egyptian Journal of Remote Sensing and Space Sciences, 23(1), 63–75. https://doi.org/10.1016/j.ejrs.2018.11.003spa
dc.relation.referencesDas, S., & Pardeshi, S. D. (2018). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7). https://doi.org/10.1007/s13201-018-0848-xspa
dc.relation.referencesDutal, H., & Reis, M. (2020). Determining the effects of land use on soil erodibility in the Mediterranean highland regions of Turkey: a case study of the Korsulu stream watershed. Environmental Monitoring and Assessment, 192(3), 192. https://doi.org/10.1007/s10661-020-8155-zspa
dc.relation.referencesElgamal, A., Reggiani, P., & Jonoski, A. (2017). Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia. Journal of hydrology. Regional studies, 9, 85–103. https://doi.org/10.1016/j.ejrh.2016.09.001spa
dc.relation.referencesEl-Zeiny, A. M., & Effat, H. A. (2017). Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sensing Applications Society and Environment, 8, 266–277. https://doi.org/10.1016/j.rsase.2017.10.003spa
dc.relation.referencesEniyew, S., Teshome, M., Sisay, E., & Bezabih, T. (2021). Integrating RUSLE model with remote sensing and GIS for evaluation soil erosion in Telkwonz Watershed, Northwestern Ethiopia. Remote Sensing Applications Society and Environment, 24. https://doi.org/10.1016/j.rsase.2021.100623spa
dc.relation.referencesFaridzad, M., Yang, T., Hsu, K., Sorooshian, S., & Xiao, C. (2018). Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. Journal of Hydrology, 563, 123–142. https://doi.org/10.1016/j.jhydrol.2018.05.071spa
dc.relation.referencesGobierno de España. (s.f). Teledetección. Obtenido de Instituto Geográfico Nacional: https://www.ign.es/web/resources/docs/IGNCnig/OBS-Teledeteccion.pdf#:~:text=La%20teledetecci%C3%B3n%20es%20la%20t%C3%A9cnica,informaci%C3%B3n%20interpretable%20de%20la%20Tierra.spa
dc.relation.referencesGürtekin, E., & Gökçe, O. (2021). Estimation of erosion risk of Harebakayiş sub-watershed, Elazig, Turkey, using GIS based RUSLE model. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100315spa
dc.relation.referencesHu, Q., Willson, G. D., Chen, X., & Akyuz, A. (2005). Effects of climate and landcover change on stream discharge in the Ozark Highlands, USA. Environmental Modeling and Assessment, 10(1), 9–19. https://doi.org/10.1007/s10666-004-4266-0spa
dc.relation.referencesHuo, A., & Li, H. (2013). Assessment of climate change impact on the stream-flow in a typical debris flow watershed of Jianzhuangcuan catchment in Shaanxi Province, China. Environmental Earth Sciences, 69(6), 1931–1938. https://doi.org/10.1007/s12665-012-2025-0spa
dc.relation.referencesJaiswal, R. K., Ghosh, N. C., Galkate, R. V., & Thomas, T. (2015). Multi criteria decision analysis (MCDA) for watershed prioritization. Aquatic procedia, 4, 1553–1560. https://doi.org/10.1016/j.aqpro.2015.02.201spa
dc.relation.referencesJaved, A., Khanday, M. Y., & Ahmed, R. (2009). Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 37(2), 261–274. https://doi.org/10.1007/s12524-009-0016-8spa
dc.relation.referencesKulkarni, A. T., Mohanty, J., Eldho, T. I., Rao, E. P., & Mohan, B. K. (2014). A web GIS based integrated flood assessment modeling tool for coastal urban watersheds. Computers & Geosciences, 64, 7–14. https://doi.org/10.1016/j.cageo.2013.11.002spa
dc.relation.referencesLiu, B.-W., Wang, M.-H., Chen, T.-L., Tseng, P.-C., Sun, Y., Chiang, A., & Chiang, P.-C. (2020). Establishment and implementation of green infrastructure practice for healthy watershed management: Challenges and perspectives. Water-Energy Nexus, 3, 186–197. https://doi.org/10.1016/j.wen.2020.05.003spa
dc.relation.referencesMishra, S. K., & Singh, V. P. (2003). Soil conservation service curve number (SCS-CN) methodology (2003a ed.). Springer.spa
dc.relation.referencesMoreno-Madriñán, M. J., Rickman, D. L., Ogashawara, I., Irwin, D. E., Ye, J., & Al-Hamdan, M. Z. (2015). Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent coral Reefs: Magdalena River and Rosario Islands, Colombia. ITC journal, 38, 204–215. https://doi.org/10.1016/j.jag.2015.01.008spa
dc.relation.referencesNavarro, L., Camacho, R., López, J. E., & Saldarriaga, J. F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon, 7(11). https://doi.org/10.1016/j.heliyon.2021.e08301spa
dc.relation.referencesNoori, A., Bonakdari, H., Hassaninia, M., Morovati, K., Khorshidi, I., Noori, A., & Gharabaghi, B. (2022). A reliable GIS-based FAHP-FTOPSIS model to prioritize urban water supply management scenarios: A case study in semi-arid climate. Sustainable Cities and Society, 81. https://doi.org/10.1016/j.scs.2022.103846spa
dc.relation.referencesOeurng, C., Cochrane, T., Chung, S., Kondolf, M., Piman, T., & Arias, M. (2019). Assessing climate change impacts on river flows in the Tonle Sap Lake basin, Cambodia. Water, 11(3), 618. https://doi.org/10.3390/w11030618spa
dc.relation.referencesPatil, J. P., Sarangi, A., Singh, A. K., & Ahmad, T. (2008). Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biosystems Engineering, 100(1), 137–146. https://doi.org/10.1016/j.biosystemseng.2008.02.001spa
dc.relation.referencesRao, K. N., Narendra, K., & Latha, P. S. (2010). An integrated study of geospatial information technologies for surface runoff estimation in an agricultural watershed, India. Journal of the Indian Society of Remote Sensing, 38(2), 255–267. https://doi.org/10.1007/s12524-010-0032-8spa
dc.relation.referencesRodrigues, M. V. C., Guimarães, D. V., Galvão, R. B., Patrick, E., & Fernandes, F. (2022). Urban watershed management prioritization using the rapid impact assessment matrix (RIAM-UWMAP), GIS and field survey. Environmental Impact Assessment Review, 94. https://doi.org/10.1016/j.eiar.2022.106759spa
dc.relation.referencesRuijsch, J., Verstegen, J. A., Sutanudjaja, E. H., & Karssenberg, D. (2021). Systemic change in the Rhine-Meuse basin: Quantifying and explaining parameters trends in the PCR-GLOBWB global hydrological model. Advances in Water Resources, 155. https://doi.org/10.1016/j.advwatres.2021.104013spa
dc.relation.referencesSaaty, T. L., & Vargas, L. G. (2012). The seven pillars of the analytic hierarchy process. En International Series in Operations Research & Management Science (pp. 23–40). Springer US.spa
dc.relation.referencesSáenz Saavedra, N. (1992). Los sistemas de información geográfica (SIG) una herramienta poderosa para la toma de decisiones. Ingeniería e Investigación, 28, 31–40. https://doi.org/10.15446/ing.investig.n28.20790spa
dc.relation.referencesSánchez, P. (2012). La teledetección enfocada a la obtención de mapas digitales. Universidad de Cuenca, Cuenca.spa
dc.relation.referencesSaravanan, S., Saranya, T., Abijith, D., Jacinth, J. J., & Singh, L. (2021). Delineation of groundwater potential zones for Arkavathi sub-watershed, Karnataka, India using remote sensing and GIS. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100380spa
dc.relation.referencesSharma, S., & Mahajan, A. K. (2020). GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10(7). https://doi.org/10.1007/s13201-020-01243-xspa
dc.relation.referencesShiferaw, A., & Singh, K. L. (2011). Evaluating the land use and land cover dynamics in Borena Woreda South Wollo Highlands, Ethiopia. The Ethiopian Journal of Business and Economics, 2(1). https://doi.org/10.4314/ejbe.v2i1spa
dc.relation.referencesSingh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7(4), 270–292. https://doi.org/10.1061/(asce)1084-0699(2002)7:4(270)spa
dc.relation.referencesStrahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America bulletin, 63(11)spa
dc.relation.referencesSwain, S. S., Mishra, A., Sahoo, B., & Chatterjee, C. (2020). Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology, 590. https://doi.org/10.1016/j.jhydrol.2020.125260spa
dc.relation.referencesUniversidad Autónoma de Ciudad Juárez. (s.f.). Geoinformática. Obtenido de Universidad Autónoma de Ciudad Juárez: http://www3.uacj.mx/SC/Paginas/La-Geoinform%C3%A1tica-es.aspx#:~:text=La%20Geoinform%C3%A1tica%2C%20si%20se%20prefiere,su%20captura%20o%20levantamiento%2C%20alspa
dc.relation.referencesVélez-Otálvaro, M., Ortiz-Pimienta, C., & Vargas-Quintero, M. (s.f.). Las aguas subterráneas - Un enfoque práctico. Instituto Colombiano de Geología y Minería.spa
dc.relation.referencesWang, C., Si, J., Zhao, C., Jia, B., Celestin, S., Li, D., He, X., Zhou, D., Qin, J., & Zhu, X. (2022). Adequacy of satellite derived data for streamflow simulation in three Hexi inland river basins, Northwest China. Atmospheric Research, 274. https://doi.org/10.1016/j.atmosres.2022.106203spa
dc.relation.referencesWang, G., Mang, S., Cai, H., Liu, S., Zhang, Z., Wang, L., & Innes, J. L. (2016). Integrated watershed management: evolution, development and emerging trends. Journal of Forestry Research, 27(5), 967–994. https://doi.org/10.1007/s11676-016-0293-3spa
dc.relation.referencesWilson, C., & Tisdell, C. (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics: The Journal of the International Society for Ecological Economics, 39(3), 449–462. https://doi.org/10.1016/s0921-8009(01)00238-5spa
dc.relation.referencesWischmeier, W. H., Smith, D. D., United States. Science and Education Administration, & Purdue University. Agricultural Experiment Station. (1978). Predicting rainfall erosion losses: A guide to conservation planning. Department of Agriculture, Science and Education Administrationspa
dc.relation.referencesYousif, M. (2019). Hydrogeological inferences from remote sensing data and geoinformatic applications to assess the groundwater conditions: El-Kubanyia basin, Western Desert, Egypt. Journal of African Earth Sciences (Oxford, England: 1994), 152, 197–214. https://doi.org/10.1016/j.jafrearsci.2019.02.003spa
dc.relation.referencesYuan, S., Quiring, S. M., Kalcic, M. M., Apostel, A. M., Evenson, G. R., & Kujawa, H. A. (2020). Optimizing climate model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. Journal of Hydrology, 588. https://doi.org/10.1016/j.jhydrol.2020.125064spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordGeoinformaticsspa
dc.subject.keywordRiver basinspa
dc.subject.keywordManagementspa
dc.subject.lembIngeniería Ambientalspa
dc.subject.lembIngenieríaspa
dc.subject.lembGestión del medio ambientespa
dc.subject.proposalGeoinformáticaspa
dc.subject.proposalCuenca hidrográficaspa
dc.subject.proposalGestiónspa
dc.titleLa geoinformática en la gestión de cuencas hidrográficas.spa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2022lauravelasco.pdf
Tamaño:
145.59 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
Carta_Aprobacion_Facultad_IngAmb 2022 - VELASCO QUITIAN LAURA VALENTINA.pdf
Tamaño:
823.71 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad
Thumbnail USTA
Nombre:
Carta_autorizacion_autoarchivo_autor_2022.pdf
Tamaño:
906.33 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta derechos de autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: