Estudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans.

dc.contributor.advisorRozo Correa, Ciro Eduardo
dc.contributor.authorJurado Herrera, Mario Andrés
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2022-03-18T20:26:32Z
dc.date.available2022-03-18T20:26:32Z
dc.date.issued2022-03-09
dc.descriptionEn el presente trabajo se evaluaron las interacciones no covalentes entre los terpenos citronelal geraniol y timol contra la enzima glucosiltransferasa(GTFS) de un patógeno oral conocido como streptococcus mutans uno de los responsables de las caries dentales. La principal función de la enzima GTFS es sintetizar glucano a partir de la sacarosa desencadenando la desmineralización de los dientes lo que conlleva a la colonización de las caries. Por esta razón esta enzima es de gran interés para control de las caries dentales. Para evaluar las interacciones se utilizó técnicas computaciones como el acoplamiento molecular y dinámica molecular. Con el fin de seleccionar el mejor programa de acoplamiento se evaluaron tres programas conocidos como Autodock, Vina y Smina, donde se encontró que el programa Autodock logró reproducir las interacciones del ligando original. Además, este mismo programa logró reproducir las interacciones de otro ligando que fue empleado en un estudio teórico práctico. Después de seleccionar el programa se realizó la optimización de los terpenos y se ejecutó el acoplamiento con cada estructura. Se seleccionaron las tres primeras poses del resultado de cada acoplamiento y se encontró que esas poses presentaban en su mayoría las interacciones reportadas en la literatura. Con las tres primeras poses de cada ligando se realizó la dinámica molecular durante diez nanosegundos donde se encontró que, al incorporar los terpenos dentro de la proteína, esta adquiría estabilidad.spa
dc.description.abstractIn the present work, the non-covalent interactions between the terpenes citronellal, geraniol and thymol against the enzyme glucosyltransferase (GTFS) of an oral pathogen known as streptococcus mutans, one of those responsible for dental caries. The main function of the GTFS enzyme is to synthesize glucan from sucrose, triggering the demineralization of the teeth, which leads to the colonization of caries. For this reason, this enzyme is of great interest for the control of dental caries. To evaluate the interactions, computational techniques such as molecular maintenance and molecular dynamics were modified. In order to select the best activation program, three programs known as Autodock, Vina and Smina were evaluated, where it was found that the Autodock program will reproduce the interactions of the original ligand. In addition, this same program will reproduce the interactions of another ligand that was used in a practical theoretical study. After selecting the program, the optimization of the terpenes was carried out and the protocol was executed with each structure. The first three poses of the result of each of them were selected and it was found that these poses presented mostly the interactions reported in the literature. With the first three poses of each ligand, molecular dynamics was performed for ten nanoseconds where it was found that, by incorporating the terpenes into the protein, it would acquire stability.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationJurado, M. (2022). Estudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans.[Tesis de pregrado]. Universidad Santo Tomás. Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/43700
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programPregrado Química Ambientalspa
dc.relation.referencesAceves, H. (2018). Dinámica molecular de la permeabilidad de nanotubos de carbono en una Bicapa Lipídica. In CONACYT. Centro de Investigación en Materiales Avanzados.spa
dc.relation.referencesAguirre Valderrama, A. (2009). Estudio Mecanocuántico, Docking y dinámica molecular de tioazúcares como inhibidores de la proteína fucosidasa: algoritmo para el análisis conformacional y programa para el cálculo de constantes de acoplamiento vecinales (CAL3JHH). Universidad de Granada.spa
dc.relation.referencesAl-asmari, A. K., Athar, T., & Al-faraidy, A. A. (2017). Chemical composition of essential oil of thymus vulgaris collected from Saudi Arabian market. Asian Pacific Journal of Tropical Biomedicine, 7(2), 147–150.spa
dc.relation.referencesAmaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble Docking in Drug Discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038spa
dc.relation.referencesBotan, A., Favela-Rosales, F., Fuchs, P. F. J., Javanainen, M., Kanduč, M., Kulig, W., Lamberg, A., Loison, C., Lyubartsev, A., Miettinen, M. S., Monticelli, L., Määttä, J., Ollila, O. H. S., Retegan, M., Róg, T., Santuz, H., & Tynkkynen, J. (2015). Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. Journal of Physical Chemistry B, 119(49), 15075–15088. https://doi.org/10.1021/acs.jpcb.5b04878spa
dc.relation.referencesBueren-Calabuig, J. (2014). Dinámica Molecular (1st ed., Vol. 8, Issue 3, pp. 1–17). CreateSpace.spa
dc.relation.referencesCaceres, M., Hidalgo, W., Stashenko, E., Torres, R., & Ortiz, C. (2020). Essential Oils of Aromatic Plants with Antibacterial , Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics, 9(147), 1–15. https://doi.org/10.3390 / antibióticos9040147spa
dc.relation.referencesCarvalho, L., Furletti, V. F., Meyre, S., Bersan, F., Guilherme, M., Ana, L., Tasca, G., Carvalho, E. De, Sartoratto, A., Vera, L., Rehder, G., Mara, G., Cristina, M., Duarte, T., Ikegaki, M., Alencar, S. M. De, & Rosalen, P. L. (2012). Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects. Evidence Based Complementary and Alternative Medicine, 1–12. https://doi.org/10.1155/2012/751435spa
dc.relation.referencesChen, Y. C. (2015). Beware of docking! Trends in Pharmacological Sciences, 36(2), 78–95. https://doi.org/10.1016/j.tips.2014.12.001spa
dc.relation.referencesFejerskov, O., N. B. (2004). Dental Caries: The Disease and its Clinical Management. In Blackwell Munksgaard (2nd ed., Vol. 8, Issue 3). https://doi.org/10.1111/j.1600-0579.2004.00341.xspa
dc.relation.referencesFilgueira, W., & Jr, A. (2019). Docking Screens for Drug Discovery (W. Filgueira (ed.); 1st ed.).spa
dc.relation.referencesForesman, J., & Frisch, A. (2009). Exploring chemistry with electronic structure methods. In Gaussian Inc, Pittsburgh, PA (2nd ed., Vol. 10, Issue 13, pp. 4161–4163). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Exploring+Chemistry+With+Electronic+Structure+Methods#1%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Exploring+chemistry+with+electronic+structure+methods,+1996#1spa
dc.relation.referencesFreires, I. A., Denny, C., Benso, B., Alencar, S. M. De, & Rosalen, P. L. (2015). Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules, 20, 7329–7358. https://doi.org/10.3390/molecules20047329spa
dc.relation.referencesGuandalini Cunha, B., Duque, C., Sampaio Caiaffa, K., Massunari, L., Araguê Catanoze, I., dos Santos, D. M., de Oliveira, S. H. P., & Guiotti, A. M. (2020). Cytotoxicity and antimicrobial effects of citronella oil (Cymbopogon nardus) and commercial mouthwashes on S. aureus and C. albicans biofilms in prosthetic materials. Archives of Oral Biology, 109(September 2019). https://doi.org/10.1016/j.archoralbio.2019.104577spa
dc.relation.referencesGupta, M., Sharma, R., & Kumar, A. (2018). Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry, 76(June), 210–217. https://doi.org/10.1016/j.compbiolchem.2018.06.005spa
dc.relation.referencesHairul Islam, M. I., Arokiyaraj, S., Kuralarasan, M., Senthil Kumar, V., Harikrishnan, P., Saravanan, S., Ashok, G., Chellappandian, M., Bharanidharan, R., Muralidaran, S., & Thirugnanasambantham, K. (2020). Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent Cariogenesis. Microbial Pathogenesis, 143(February), 104129. https://doi.org/10.1016/j.micpath.2020.104129spa
dc.relation.referencesHamada, S., & Slade, H. D. (1980). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological Reviews, 44(2), 331–384. https://doi.org/10.1128/mmbr.44.2.331-384.1980spa
dc.relation.referencesHanwell, M. D. Curtis, D. E Lonie, D. C. Vandermeersch, T., Zurek, E. y Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 1–17. https://doi.org/10.1016/j.aim.2014.05.019spa
dc.relation.referencesIto, K., Ito, S., Shimamura, T., Weyand, S., Kawarasaki, Y., Misaka, T., Abe, K., Kobayashi, T., Cameron, A. D., & Iwata, S. (2011). Crystal Structure of Glucansucrase from the Dental Caries Pathogen Streptococcus mutans. Journal of Molecular Biology, 408(2), 177–186. https://doi.org/10.1016/j.jmb.2011.02.028spa
dc.relation.referencesJaña, G. A. (2018). QM/MM Approach on the structural and stereolectronic Factors governing glycosylation by GTF-SI from streptococcus mutans. Organic y Biomolecular Chemistry, 14, 1–4. https://doi.org/10.1039/C8OB00284Cspa
dc.relation.referencesJiménez, C. (2002). Análisis de Interfases Metálicas y Su Modificación Por Bombardeo Iónico. Universidad Complutense de Madrid.spa
dc.relation.referencesKidd, E. (2005). Essentials of Dental Caries. In Oxford University Press (3rd ed., Vol. 4, Issue 3).spa
dc.relation.referencesKoes, D. R., Baumgartner, M. P., & Camacho, C. J. (2013). Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. Journal of Chemical Information and Modeling, 53(8), 1893–1904. https://doi.org/10.1021/ci300604zspa
dc.relation.referencesKumar, S., & Kumar, S. (2019). Molecular Docking: A Structure-Based Approach for Drug Repurposing. In In Silico Drug Design (pp. 161–189). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816125-8.00006-7spa
dc.relation.referencesLeach, A. R. (2001). Molecular modelling principles and applications (2nd ed.). Prentice Hall.spa
dc.relation.referencesLeemhuis, H., Pijning, T., Dobruchowska, J. M., Leeuwen, S. S. Van, Kralj, S., Dijkstra, B. W., & Dijkhuizen, L. (2013). Glucansucrases : Three-dimensional structures , reactions , mechanism ,alpha-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 163(2), 250–272. https://doi.org/10.1016/j.jbiotec.2012.06.037spa
dc.relation.referencesLipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL.), 4–17. https://doi.org/10.1016/j.addr.2012.09.019spa
dc.relation.referencesMinisterio de salud. (2014). IV Estudio Nacional De Salud Bucal - ENSAB IV (Vol. 3). Morris y Olson, A. (2009). Autodock4 y AutoDockTools4: acoplamiento automático con flexibilidad de receptor selectivo. Computational Chemistry, 16, 85–96. https://doi.org/10.1002 / jcc.21256spa
dc.relation.referencesOchoa, R., Martínez-Pabón, M. C., Arismendi-Echeverri, M. A., Rendón-Osorio, W. L., & Muskus-López, C. E. (2017). In silico search of inhibitors of Streptococcus mutans for the control of dental plaque. Archives of Oral Biology, 83, 68–75. https://doi.org/doi:10.1016/j.archoralbio.2017.06.027spa
dc.relation.referencesOsorio, M. I., Zúñiga, M. A., Mendoza, F., Jaña, G. A., & Jiménez, V. A. (2018). Modulation of glucan-enzyme interactions by domain V in GTF-SI from Streptococcus mutans. WILEY Proteins, July, 1–7. https://doi.org/10.1002/prot.25624spa
dc.relation.referencesPan, W., Fan, M., Wu, H., Melander, C., & Liu, C. (2015). A new small molecule inhibits Streptococcus mutans biofilms in vitro and in vivo. Journal of Applied Microbiology, 119(5), 1403–1411. https://doi.org/10.1111/jam.12940spa
dc.relation.referencesRen, Z., Cui, T., Zeng, J., Chen, L., Zhang, W., Xu, X., Cheng, L., Li, M., Li, J., Zhou, X., & Li, Y. (2016). Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrobial Agents and Chemotherapy, 60(1), 126–135. https://doi.org/10.1128/AAC.00919-15spa
dc.relation.referencesRodríguez Quintanilla, R., Ruiz Nova, C., Arias Moyano, G., Castro Salazar, H., Martínez, J., & Stashenko, E. (2012). Estudio comparativo de la composición de los aceites esenciales de cuatro especies del género Cymbopogon (Poaceae) cultivadas en Colombia. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 11(1), 77–85.spa
dc.relation.referencesSánchez, L., Mendoza, F., Alderete, J. B., Jiménez, V. A., & Jaña, G. A. (2019). The role of conserved arginine in the GH70 family: A computational study of the structural features and their implications on the catalytic mechanism of GTF-SI from: Streptoccocus mutans. Organic and Biomolecular Chemistry, 17(25), 6269–6276. https://doi.org/10.1039/c9ob01055fspa
dc.relation.referencesSantillán, M. (2015). El uso tradicional de las plantas medicinales, un aporte para la ciencia. Universidad Nacional Autónoma de México. http://ciencia.unam.mx/leer/97/El_uso_tradicional_de_las_plantas_medicinales_un_aporte_para_la_cienciaspa
dc.relation.referencesSantos, L. H. S., Ferreira, R. S., & Caffarena, E. R. (2019). Integrating Molecular Docking and Molecular Dynamics Simulations. In Docking Screens for Drug Discovery, Methods in Molecular Biology (1st ed., Vol. 2053, p. 22). Springer. https://doi.org/doi.org/10.1007/978-1-4939-9752-7_2spa
dc.relation.referencesSchött, G., Liesegang, S., Gaunitz, F., Gleß, A., Basche, S., Hannig, C., & Speer, K. (2017). The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia, 121(May), 118–128. https://doi.org/10.1016/j.fitote.2017.07.005spa
dc.relation.referencesSchwarts, R Anachem, M. S. G., Fritz, T., & Anachem, D. (2012). Molecular Modellin for Beginners (2nd ed.).spa
dc.relation.referencesSelwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. In Lancet (Vol. 369, Issue 9555, pp. 51–59). https://doi.org/10.1016/S0140-6736(07)60031-2spa
dc.relation.referencesStudio, D. (2015). Dassault Systemes BIOVIA, Discovery Studio Modelling Environment,Release 4.5. Accelrys Software Inc.spa
dc.relation.referencesTeles, B., Murbach, Braga, C. P., Carolo, K., Barbosa, L. N., Lúcia, V., Rall, M., Sforcin, J. M., Angélica, A., Fernandes, H., & Júnior, A. F. (2014). Effect of Inhaling Cymbopogon martinii Essential Oil and Geraniol on Serum Biochemistry Parameters and Oxidative Stress in Rats. Biochemistry Research International, 2014, 1–7. https://doi.org/10.1155/2014/493183spa
dc.relation.referencesTofiño-Rivera, A., Ortega-Cuadros, M., Galvis-Pareja, D., Jiménez-Rios, H., Merini, L. J., & Martínez-Pabón, M. C. (2016). Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. Journal of Ethnopharmacology, 194, 749–754. https://doi.org/doi.org/10.1016/j.jep.2016.10.044spa
dc.relation.referencesTrott, O., & Olson, A. J. (2012). Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jccspa
dc.relation.referencesZhang, Q., Nijampatnam, B., Hua, Z., Nguyen, T., Zou, J., Cai, X., Michalek, S. M., Velu, S. E., & Wu, H. (2017). Structure-Based Discovery of Small Molecule Inhibitors of Cariogenic Virulence. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-06168-1spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordDockingspa
dc.subject.keywordStreptococcus mutansspa
dc.subject.keywordMolecular dynamicsspa
dc.subject.keywordBinding modespa
dc.subject.keywordInteraction energyspa
dc.subject.lembEnfermedades de los dientesspa
dc.subject.lembDinámica molecularspa
dc.subject.lembRotación molecularspa
dc.subject.proposalAcoplamiento molecularspa
dc.subject.proposalStreptococcus mutansspa
dc.subject.proposalDinámica molecularspa
dc.subject.proposalModo de uniónspa
dc.subject.proposalEnergía de interacciónspa
dc.titleEstudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans.spa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
2022JuradoMario.pdf
Size:
6.28 MB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado
Thumbnail USTA
Name:
2022JuradoMario1.pdf
Size:
532.55 KB
Format:
Adobe Portable Document Format
Description:
Aprobación de facultad
Thumbnail USTA
Name:
2022JuradoMario2.pdf
Size:
72.29 KB
Format:
Adobe Portable Document Format
Description:
Acuerdo de publicación

License bundle

Now showing 1 - 1 of 1
Thumbnail USTA
Name:
license.txt
Size:
807 B
Format:
Item-specific license agreed upon to submission
Description: