Estudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans.
dc.contributor.advisor | Rozo Correa, Ciro Eduardo | |
dc.contributor.author | Jurado Herrera, Mario Andrés | |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2022-03-18T20:26:32Z | |
dc.date.available | 2022-03-18T20:26:32Z | |
dc.date.issued | 2022-03-09 | |
dc.description | En el presente trabajo se evaluaron las interacciones no covalentes entre los terpenos citronelal geraniol y timol contra la enzima glucosiltransferasa(GTFS) de un patógeno oral conocido como streptococcus mutans uno de los responsables de las caries dentales. La principal función de la enzima GTFS es sintetizar glucano a partir de la sacarosa desencadenando la desmineralización de los dientes lo que conlleva a la colonización de las caries. Por esta razón esta enzima es de gran interés para control de las caries dentales. Para evaluar las interacciones se utilizó técnicas computaciones como el acoplamiento molecular y dinámica molecular. Con el fin de seleccionar el mejor programa de acoplamiento se evaluaron tres programas conocidos como Autodock, Vina y Smina, donde se encontró que el programa Autodock logró reproducir las interacciones del ligando original. Además, este mismo programa logró reproducir las interacciones de otro ligando que fue empleado en un estudio teórico práctico. Después de seleccionar el programa se realizó la optimización de los terpenos y se ejecutó el acoplamiento con cada estructura. Se seleccionaron las tres primeras poses del resultado de cada acoplamiento y se encontró que esas poses presentaban en su mayoría las interacciones reportadas en la literatura. Con las tres primeras poses de cada ligando se realizó la dinámica molecular durante diez nanosegundos donde se encontró que, al incorporar los terpenos dentro de la proteína, esta adquiría estabilidad. | spa |
dc.description.abstract | In the present work, the non-covalent interactions between the terpenes citronellal, geraniol and thymol against the enzyme glucosyltransferase (GTFS) of an oral pathogen known as streptococcus mutans, one of those responsible for dental caries. The main function of the GTFS enzyme is to synthesize glucan from sucrose, triggering the demineralization of the teeth, which leads to the colonization of caries. For this reason, this enzyme is of great interest for the control of dental caries. To evaluate the interactions, computational techniques such as molecular maintenance and molecular dynamics were modified. In order to select the best activation program, three programs known as Autodock, Vina and Smina were evaluated, where it was found that the Autodock program will reproduce the interactions of the original ligand. In addition, this same program will reproduce the interactions of another ligand that was used in a practical theoretical study. After selecting the program, the optimization of the terpenes was carried out and the protocol was executed with each structure. The first three poses of the result of each of them were selected and it was found that these poses presented mostly the interactions reported in the literature. With the first three poses of each ligand, molecular dynamics was performed for ten nanoseconds where it was found that, by incorporating the terpenes into the protein, it would acquire stability. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico Ambiental | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Jurado, M. (2022). Estudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans.[Tesis de pregrado]. Universidad Santo Tomás. Bucaramanga, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/43700 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Química Ambiental | spa |
dc.publisher.program | Pregrado Química Ambiental | spa |
dc.relation.references | Aceves, H. (2018). Dinámica molecular de la permeabilidad de nanotubos de carbono en una Bicapa Lipídica. In CONACYT. Centro de Investigación en Materiales Avanzados. | spa |
dc.relation.references | Aguirre Valderrama, A. (2009). Estudio Mecanocuántico, Docking y dinámica molecular de tioazúcares como inhibidores de la proteína fucosidasa: algoritmo para el análisis conformacional y programa para el cálculo de constantes de acoplamiento vecinales (CAL3JHH). Universidad de Granada. | spa |
dc.relation.references | Al-asmari, A. K., Athar, T., & Al-faraidy, A. A. (2017). Chemical composition of essential oil of thymus vulgaris collected from Saudi Arabian market. Asian Pacific Journal of Tropical Biomedicine, 7(2), 147–150. | spa |
dc.relation.references | Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble Docking in Drug Discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038 | spa |
dc.relation.references | Botan, A., Favela-Rosales, F., Fuchs, P. F. J., Javanainen, M., Kanduč, M., Kulig, W., Lamberg, A., Loison, C., Lyubartsev, A., Miettinen, M. S., Monticelli, L., Määttä, J., Ollila, O. H. S., Retegan, M., Róg, T., Santuz, H., & Tynkkynen, J. (2015). Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. Journal of Physical Chemistry B, 119(49), 15075–15088. https://doi.org/10.1021/acs.jpcb.5b04878 | spa |
dc.relation.references | Bueren-Calabuig, J. (2014). Dinámica Molecular (1st ed., Vol. 8, Issue 3, pp. 1–17). CreateSpace. | spa |
dc.relation.references | Caceres, M., Hidalgo, W., Stashenko, E., Torres, R., & Ortiz, C. (2020). Essential Oils of Aromatic Plants with Antibacterial , Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics, 9(147), 1–15. https://doi.org/10.3390 / antibióticos9040147 | spa |
dc.relation.references | Carvalho, L., Furletti, V. F., Meyre, S., Bersan, F., Guilherme, M., Ana, L., Tasca, G., Carvalho, E. De, Sartoratto, A., Vera, L., Rehder, G., Mara, G., Cristina, M., Duarte, T., Ikegaki, M., Alencar, S. M. De, & Rosalen, P. L. (2012). Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects. Evidence Based Complementary and Alternative Medicine, 1–12. https://doi.org/10.1155/2012/751435 | spa |
dc.relation.references | Chen, Y. C. (2015). Beware of docking! Trends in Pharmacological Sciences, 36(2), 78–95. https://doi.org/10.1016/j.tips.2014.12.001 | spa |
dc.relation.references | Fejerskov, O., N. B. (2004). Dental Caries: The Disease and its Clinical Management. In Blackwell Munksgaard (2nd ed., Vol. 8, Issue 3). https://doi.org/10.1111/j.1600-0579.2004.00341.x | spa |
dc.relation.references | Filgueira, W., & Jr, A. (2019). Docking Screens for Drug Discovery (W. Filgueira (ed.); 1st ed.). | spa |
dc.relation.references | Foresman, J., & Frisch, A. (2009). Exploring chemistry with electronic structure methods. In Gaussian Inc, Pittsburgh, PA (2nd ed., Vol. 10, Issue 13, pp. 4161–4163). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Exploring+Chemistry+With+Electronic+Structure+Methods#1%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Exploring+chemistry+with+electronic+structure+methods,+1996#1 | spa |
dc.relation.references | Freires, I. A., Denny, C., Benso, B., Alencar, S. M. De, & Rosalen, P. L. (2015). Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules, 20, 7329–7358. https://doi.org/10.3390/molecules20047329 | spa |
dc.relation.references | Guandalini Cunha, B., Duque, C., Sampaio Caiaffa, K., Massunari, L., Araguê Catanoze, I., dos Santos, D. M., de Oliveira, S. H. P., & Guiotti, A. M. (2020). Cytotoxicity and antimicrobial effects of citronella oil (Cymbopogon nardus) and commercial mouthwashes on S. aureus and C. albicans biofilms in prosthetic materials. Archives of Oral Biology, 109(September 2019). https://doi.org/10.1016/j.archoralbio.2019.104577 | spa |
dc.relation.references | Gupta, M., Sharma, R., & Kumar, A. (2018). Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry, 76(June), 210–217. https://doi.org/10.1016/j.compbiolchem.2018.06.005 | spa |
dc.relation.references | Hairul Islam, M. I., Arokiyaraj, S., Kuralarasan, M., Senthil Kumar, V., Harikrishnan, P., Saravanan, S., Ashok, G., Chellappandian, M., Bharanidharan, R., Muralidaran, S., & Thirugnanasambantham, K. (2020). Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent Cariogenesis. Microbial Pathogenesis, 143(February), 104129. https://doi.org/10.1016/j.micpath.2020.104129 | spa |
dc.relation.references | Hamada, S., & Slade, H. D. (1980). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological Reviews, 44(2), 331–384. https://doi.org/10.1128/mmbr.44.2.331-384.1980 | spa |
dc.relation.references | Hanwell, M. D. Curtis, D. E Lonie, D. C. Vandermeersch, T., Zurek, E. y Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 1–17. https://doi.org/10.1016/j.aim.2014.05.019 | spa |
dc.relation.references | Ito, K., Ito, S., Shimamura, T., Weyand, S., Kawarasaki, Y., Misaka, T., Abe, K., Kobayashi, T., Cameron, A. D., & Iwata, S. (2011). Crystal Structure of Glucansucrase from the Dental Caries Pathogen Streptococcus mutans. Journal of Molecular Biology, 408(2), 177–186. https://doi.org/10.1016/j.jmb.2011.02.028 | spa |
dc.relation.references | Jaña, G. A. (2018). QM/MM Approach on the structural and stereolectronic Factors governing glycosylation by GTF-SI from streptococcus mutans. Organic y Biomolecular Chemistry, 14, 1–4. https://doi.org/10.1039/C8OB00284C | spa |
dc.relation.references | Jiménez, C. (2002). Análisis de Interfases Metálicas y Su Modificación Por Bombardeo Iónico. Universidad Complutense de Madrid. | spa |
dc.relation.references | Kidd, E. (2005). Essentials of Dental Caries. In Oxford University Press (3rd ed., Vol. 4, Issue 3). | spa |
dc.relation.references | Koes, D. R., Baumgartner, M. P., & Camacho, C. J. (2013). Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. Journal of Chemical Information and Modeling, 53(8), 1893–1904. https://doi.org/10.1021/ci300604z | spa |
dc.relation.references | Kumar, S., & Kumar, S. (2019). Molecular Docking: A Structure-Based Approach for Drug Repurposing. In In Silico Drug Design (pp. 161–189). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816125-8.00006-7 | spa |
dc.relation.references | Leach, A. R. (2001). Molecular modelling principles and applications (2nd ed.). Prentice Hall. | spa |
dc.relation.references | Leemhuis, H., Pijning, T., Dobruchowska, J. M., Leeuwen, S. S. Van, Kralj, S., Dijkstra, B. W., & Dijkhuizen, L. (2013). Glucansucrases : Three-dimensional structures , reactions , mechanism ,alpha-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 163(2), 250–272. https://doi.org/10.1016/j.jbiotec.2012.06.037 | spa |
dc.relation.references | Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL.), 4–17. https://doi.org/10.1016/j.addr.2012.09.019 | spa |
dc.relation.references | Ministerio de salud. (2014). IV Estudio Nacional De Salud Bucal - ENSAB IV (Vol. 3). Morris y Olson, A. (2009). Autodock4 y AutoDockTools4: acoplamiento automático con flexibilidad de receptor selectivo. Computational Chemistry, 16, 85–96. https://doi.org/10.1002 / jcc.21256 | spa |
dc.relation.references | Ochoa, R., Martínez-Pabón, M. C., Arismendi-Echeverri, M. A., Rendón-Osorio, W. L., & Muskus-López, C. E. (2017). In silico search of inhibitors of Streptococcus mutans for the control of dental plaque. Archives of Oral Biology, 83, 68–75. https://doi.org/doi:10.1016/j.archoralbio.2017.06.027 | spa |
dc.relation.references | Osorio, M. I., Zúñiga, M. A., Mendoza, F., Jaña, G. A., & Jiménez, V. A. (2018). Modulation of glucan-enzyme interactions by domain V in GTF-SI from Streptococcus mutans. WILEY Proteins, July, 1–7. https://doi.org/10.1002/prot.25624 | spa |
dc.relation.references | Pan, W., Fan, M., Wu, H., Melander, C., & Liu, C. (2015). A new small molecule inhibits Streptococcus mutans biofilms in vitro and in vivo. Journal of Applied Microbiology, 119(5), 1403–1411. https://doi.org/10.1111/jam.12940 | spa |
dc.relation.references | Ren, Z., Cui, T., Zeng, J., Chen, L., Zhang, W., Xu, X., Cheng, L., Li, M., Li, J., Zhou, X., & Li, Y. (2016). Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrobial Agents and Chemotherapy, 60(1), 126–135. https://doi.org/10.1128/AAC.00919-15 | spa |
dc.relation.references | Rodríguez Quintanilla, R., Ruiz Nova, C., Arias Moyano, G., Castro Salazar, H., Martínez, J., & Stashenko, E. (2012). Estudio comparativo de la composición de los aceites esenciales de cuatro especies del género Cymbopogon (Poaceae) cultivadas en Colombia. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 11(1), 77–85. | spa |
dc.relation.references | Sánchez, L., Mendoza, F., Alderete, J. B., Jiménez, V. A., & Jaña, G. A. (2019). The role of conserved arginine in the GH70 family: A computational study of the structural features and their implications on the catalytic mechanism of GTF-SI from: Streptoccocus mutans. Organic and Biomolecular Chemistry, 17(25), 6269–6276. https://doi.org/10.1039/c9ob01055f | spa |
dc.relation.references | Santillán, M. (2015). El uso tradicional de las plantas medicinales, un aporte para la ciencia. Universidad Nacional Autónoma de México. http://ciencia.unam.mx/leer/97/El_uso_tradicional_de_las_plantas_medicinales_un_aporte_para_la_ciencia | spa |
dc.relation.references | Santos, L. H. S., Ferreira, R. S., & Caffarena, E. R. (2019). Integrating Molecular Docking and Molecular Dynamics Simulations. In Docking Screens for Drug Discovery, Methods in Molecular Biology (1st ed., Vol. 2053, p. 22). Springer. https://doi.org/doi.org/10.1007/978-1-4939-9752-7_2 | spa |
dc.relation.references | Schött, G., Liesegang, S., Gaunitz, F., Gleß, A., Basche, S., Hannig, C., & Speer, K. (2017). The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia, 121(May), 118–128. https://doi.org/10.1016/j.fitote.2017.07.005 | spa |
dc.relation.references | Schwarts, R Anachem, M. S. G., Fritz, T., & Anachem, D. (2012). Molecular Modellin for Beginners (2nd ed.). | spa |
dc.relation.references | Selwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. In Lancet (Vol. 369, Issue 9555, pp. 51–59). https://doi.org/10.1016/S0140-6736(07)60031-2 | spa |
dc.relation.references | Studio, D. (2015). Dassault Systemes BIOVIA, Discovery Studio Modelling Environment,Release 4.5. Accelrys Software Inc. | spa |
dc.relation.references | Teles, B., Murbach, Braga, C. P., Carolo, K., Barbosa, L. N., Lúcia, V., Rall, M., Sforcin, J. M., Angélica, A., Fernandes, H., & Júnior, A. F. (2014). Effect of Inhaling Cymbopogon martinii Essential Oil and Geraniol on Serum Biochemistry Parameters and Oxidative Stress in Rats. Biochemistry Research International, 2014, 1–7. https://doi.org/10.1155/2014/493183 | spa |
dc.relation.references | Tofiño-Rivera, A., Ortega-Cuadros, M., Galvis-Pareja, D., Jiménez-Rios, H., Merini, L. J., & Martínez-Pabón, M. C. (2016). Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. Journal of Ethnopharmacology, 194, 749–754. https://doi.org/doi.org/10.1016/j.jep.2016.10.044 | spa |
dc.relation.references | Trott, O., & Olson, A. J. (2012). Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc | spa |
dc.relation.references | Zhang, Q., Nijampatnam, B., Hua, Z., Nguyen, T., Zou, J., Cai, X., Michalek, S. M., Velu, S. E., & Wu, H. (2017). Structure-Based Discovery of Small Molecule Inhibitors of Cariogenic Virulence. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-06168-1 | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Docking | spa |
dc.subject.keyword | Streptococcus mutans | spa |
dc.subject.keyword | Molecular dynamics | spa |
dc.subject.keyword | Binding mode | spa |
dc.subject.keyword | Interaction energy | spa |
dc.subject.lemb | Enfermedades de los dientes | spa |
dc.subject.lemb | Dinámica molecular | spa |
dc.subject.lemb | Rotación molecular | spa |
dc.subject.proposal | Acoplamiento molecular | spa |
dc.subject.proposal | Streptococcus mutans | spa |
dc.subject.proposal | Dinámica molecular | spa |
dc.subject.proposal | Modo de unión | spa |
dc.subject.proposal | Energía de interacción | spa |
dc.title | Estudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans. | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- 2022JuradoMario.pdf
- Size:
- 6.28 MB
- Format:
- Adobe Portable Document Format
- Description:
- Trabajo de grado

- Name:
- 2022JuradoMario1.pdf
- Size:
- 532.55 KB
- Format:
- Adobe Portable Document Format
- Description:
- Aprobación de facultad

- Name:
- 2022JuradoMario2.pdf
- Size:
- 72.29 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acuerdo de publicación
License bundle
1 - 1 of 1

- Name:
- license.txt
- Size:
- 807 B
- Format:
- Item-specific license agreed upon to submission
- Description: