Modelo del problema de la ubicación del controlador en redes SDN con consideraciones de costo, latencia y confiabilidad.

dc.contributor.advisorJuliana, Arévalo
dc.contributor.authorAmaya Velasquez, Yuliana Andrea
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-07-08T22:20:21Z
dc.date.available2022-07-08T22:20:21Z
dc.date.issued2022-06-30
dc.descriptionSND dentro de su paradigma al separar el plano de datos del plano de control en una red, busca que un usuario pueda administrar, programar y controlar los recursos de la red para así facilitar y simplificar la gestión de los servicios, con el fin de realizar aprovechamiento de los recursos permitiendo su innovación y evolución en comparación con las redes tradicionales. De acuerdo con lo anterior en los últimos años se han realizado investigaciones sobre el Problema de la Ubicación del Controlador (CPP), aunque no existe una fórmula única, para cada caso, se debe responder si es necesario uno o varios controladores en la red. Este trabajo tiene como objetivo realizar las pruebas a los estudios sobre la solución del CPP en el proyecto SDNCon de la línea de investigación interconexión y convergencia del grupo INVTEL de la facultad de ingeniería de la Universidad Santo Tomás, teniendo en cuenta los escenarios ya planteados en aquellos estudios, adicionalmente realizar una comparación de los resultados con el fin de proponer un nuevo modelo matemático que incluya condiciones de confiabilidad dentro de la red, teniendo en cuenta parámetros como costo y latencia y así mismo realizar su respectiva evaluación con las herramientas utilizadas en el proyecto para si solventar el problema de la ubicación del controlador.spa
dc.description.abstractSND, within its paradigm by separating the data plane from the control plane in a network, seeks that a user can manage, schedule and control network resources in order to facilitate and simplify the management of services, in order to perform taking advantage of the resources that allow its innovation and evolution in comparison with traditional networks. In accordance with the above, in recent years, investigations have been carried out on the Controller Location Problem (CPP), although there is no unique formula, for each case, it must be answered if one or more controllers is necessary in the network. The objective of this work is to carry out the tests to the studies on the CPP solution in the SDNCon project already proposed in those studies, additionally it made a comparison of the results in order to propose a new mathematical model that would include reliability conditions within the network, taking into account parameters such as cost and latency and also carried out their respective evaluation with the tools used in the project to solve the problem of the location of the controller.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Telecomunicaciones y Regulación ticspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAmaya Velasquez, Y. A. (2022). Modelo del problema de la ubicación del controlador en redes SDN con consideraciones de costo, latencia y confiabilidad. [Trabajo de maestría, Universidad Santo Tomás]. Repositorio institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/45696
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería de Telecomunicacionesspa
dc.publisher.programMaestría Telecomunicaciones y Regulación TICspa
dc.relation.referencesA. Singels, Apropiación, generación y uso edificador del conocimiento. 2018.spa
dc.relation.referencesCEPAL, “La Digitalización En América Latina Frente Al Covid-19,” Cepal Caf Elac, pp. 2–33, 2020.spa
dc.relation.referencesW. Zhijun, X. Qing, W. Jingjie, Y. Meng, and L. Liang, “Low-Rate DDoS Attack Detection Based on Factorization Machine in Software Defined Network,” IEEE Access, vol. 8, pp. 17404–17418, 2020, doi: 10.1109/ACCESS.2020.2967478.spa
dc.relation.referencesITU-T, “Framework of software-defined networking,” 2014, [Online]. Available: https://www.itu.int/rec/T-REC-Y.3300-201406-I/en.spa
dc.relation.referencesD. Tatang, F. Quinkert, J. Frank, C. Röpke, and T. Holz, “SDN-GUARD: Protecting SDN controllers against SDN rootkits,” 2017 IEEE Conf. Netw. Funct. Virtualization Softw. Defin. Networks, NFV-SDN 2017, vol. 2017-Janua, pp. 297–302, 2017, doi: 10.1109/NFV-SDN.2017.8169856.spa
dc.relation.referencesT. Zhang, A. Bianco, and P. Giaccone, “The role of inter-controller traffic in SDN controllers placement,” 2016 IEEE Conf. Netw. Funct. Virtualization Softw. Defin. Networks, NFV-SDN 2016, pp. 87–92, 2017, doi: 10.1109/NFV-SDN.2016.7919481.spa
dc.relation.referencesM. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, vol. 7, pp. 107346–107379, 2019, doi: 10.1109/ACCESS.2019.2932422.spa
dc.relation.referencesG. Wang, Y. Zhao, J. Huang, and W. Wang, “The Controller Placement Problem in Software Defined Networking: A Survey,” IEEE Netw., vol. 31, no. 5, pp. 21–27, 2017, doi: 10.1109/MNET.2017.1600182.spa
dc.relation.referencesL. Zhu, R. Chai, and Q. Chen, “Control plane delay minimization based SDN controller placement scheme,” 2017 9th Int. Conf. Wirel. Commun. Signal Process. WCSP 2017 - Proc., vol. 2017-Janua, pp. 1–6, 2017, doi: 10.1109/WCSP.2017.8171153.spa
dc.relation.referencesJ. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A survey of controller placement problem 55 in software-defined networking,” IEEE Access, vol. 7, pp. 24290–24307, 2019, doi: 10.1109/ACCESS.2019.2893283.spa
dc.relation.referencesB. Isong, R. R. Samuel Molose, A. M. Abu-Mahfouz, and N. Dladlu, “Comprehensive review of SDN controller placement strategies,” IEEE Access, vol. 8, pp. 170070– 170092, 2020, doi: 10.1109/ACCESS.2020.3023974.spa
dc.relation.referencesM. Khorramizadeh and V. Ahmadi, “Capacity and load-aware software-defined network controller placement in heterogeneous envi tienenments,” Comput. Commun., vol. 129, no. June, pp. 226–247, 2018, doi: 10.1016/j.comcom.2018.07.037.spa
dc.relation.referencesA. A. Ateya et al., “Chaotic salp swarm algorithm for SDN multi-controller networks,” Eng. Sci. Technol. an Int. J., vol. 22, no. 4, pp. 1001–1012, 2019, doi: 10.1016/j.jestch.2018.12.015.spa
dc.relation.referencesR. Gopakumar, A. M. Unni, and V. P. Dhipin, “An adaptive algorithm for searching in flow tables of openflow switches,” Proc. 2015 39th Natl. Syst. Conf. NSC 2015, pp. 1–5, 2016, doi: 10.1109/NATSYS.2015.7489115.spa
dc.relation.referencesS. Tahmasebi, N. Rasouli, A. H. Kashefi, E. Rezabeyk, and H. R. Faragardi, “SYNCOP: An evolutionary multi-objective placement of SDN controllers for optimizing cost and network performance in WSNs,” Comput. Networks, vol. 185, no. November 2020, p. 107727, 2021, doi: 10.1016/j.comnet.2020.107727.spa
dc.relation.referencesN. S. Mohamed Samir,Effat Samir,Mohamed Azab,Mohamed R. M. Rizk, “8 Towards Optimal Placement of Controllers in SDN‐ enabled Smart Grid.pdf.” 2018.spa
dc.relation.referencesD. Santos and T. Gomes, “Controller Placement and Availability Link Upgrade Problem in SDN Networks,” Proc. 2019 11th Int. Work. Resilient Networks Des. Model. RNDM 2019, pp. 1–8, 2019, doi: 10.1109/RNDM48015.2019.8949109.spa
dc.relation.referencesS. Kim, S. Kim, B. Lee, K. Kim, and H. Y. Youn, “Load Balancing for Distributed SDN with Harmony Search,” 2019 16th IEEE Annu. Consum. Commun. Netw. Conf. CCNC 2019, pp. 1–2, 2019, doi: 10.1109/CCNC.2019.8651682.spa
dc.relation.referencesZ. Fan, J. Yao, X. Yang, Z. Wang, and X. Wan, “A multi-controller placement strategy based on delay and reliability optimization in SDN,” 2019 28th Wirel. Opt. Commun. Conf. WOCC 2019 - Proc., no. Wocc, 2019, doi: 10.1109/WOCC.2019.8770551.spa
dc.relation.referencesS. Lange et al., “Heuristic approaches to the controller placement problem in large scale SDN networks,” IEEE Trans. Netw. Serv. Manag., vol. 12, no. 1, pp. 4–17, 2015, doi: 10.1109/TNSM.2015.2402432.spa
dc.relation.referencesA. Sallahi and M. St-Hilaire, “Expansion model for the controller placement problem in software defined networks,” IEEE Commun. Lett., vol. 21, no. 2, pp. 274–277, 2017, doi: 10.1109/LCOMM.2016.2621746.spa
dc.relation.referencesL. Mamushiane, J. Mwangama, and A. A. Lysko, “Given a SDN Topology, How Many Controllers are Needed and Where Should They Go?,” 2018 IEEE Conf. Netw. Funct. Virtualization Softw. Defin. Networks, NFV-SDN 2018, pp. 2–7, 2018, doi: 10.1109/NFV-SDN.2018.8725710.spa
dc.relation.referencesE. Husni and A. Bramantyo, “Design and Implementation of MPLS SDN Controller Application based on OpenDaylight,” 2018 Int. Symp. Networks, Comput. Commun. ISNCC 2018, 2018, doi: 10.1109/ISNCC.2018.8530900.spa
dc.relation.referencesP. Talhar and A. P. Bhagat, “An Adaptive Approach for Controller Placement Problem in Software Defined Networks,” Proc. 2018 3rd IEEE Int. Conf. Res. Intell. Comput. Eng. RICE 2018, pp. 1–11, 2018, doi: 10.1109/RICE.2018.8509059.spa
dc.relation.referencesC. S. Khin, M. Zin Oo, and A. T. Kyaw, “Packet-in Messages Handling Scheme to Reduce Controller Bottlenecks in OpenFlow Networks,” 17th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol. ECTI-CON 2020, pp. 502–505, 2020, doi: 10.1109/ECTI-CON49241.2020.9158127.spa
dc.relation.referencesJ. Wiley, “New-generation Protocols,” 2020.spa
dc.relation.referencesM. A. Beiruti and Y. Ganjali, “Load migration protocol for SDN controllers,” Proc. - Int. Conf. Netw. Protoc. ICNP, vol. 2019-Octob, 2019, doi: 10.1109/ICNP.2019.8888102.spa
dc.relation.referencesS. Yang, L. Cui, Z. Chen, and W. Xiao, “An Efficient Approach to Robust SDN 57 Controller Placement for Security,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 3, pp. 1669–1682, 2020, doi: 10.1109/TNSM.2020.2994837.spa
dc.relation.referencesR. Zhou, Y. Lai, Z. Liu, and J. Liu, “Study on Authentication Protocol of SDN Trusted Domain,” Proc. - 2015 IEEE 12th Int. Symp. Auton. Decentralized Syst. ISADS 2015, pp. 281–284, 2015, doi: 10.1109/ISADS.2015.29.spa
dc.relation.referencesY. Jiménez, C. Cervelló-Pastor, and A. García, “Dynamic resource discovery protocol for software defined networks,” IEEE Commun. Lett., vol. 19, no. 5, pp. 743–746, 2015, doi: 10.1109/LCOMM.2015.2403322.spa
dc.relation.referencesA. T. S. Abu-Jassar, “Mathematical tools for SDN formalisation and verification,” 2015 2nd Int. Sci. Conf. Probl. Infocommunications Sci. Technol. PIC S T 2015 - Conf. Proc., pp. 35–38, 2015, doi: 10.1109/INFOCOMMST.2015.7357262.spa
dc.relation.referencesH. Zhang and J. Yan, “Performance of SDN Routing in Comparison with Legacy Routing Protocols,” Proc. - 2015 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discov. CyberC 2015, pp. 491–494, 2015, doi: 10.1109/CyberC.2015.30.spa
dc.relation.referencesR. Chai, X. Yang, C. Du, and Q. Chen, “Network cost optimization-based capacitated controller deployment for SDN,” Comput. Networks, vol. 197, p. 108326, 2021, doi: 10.1016/j.comnet.2021.108326.spa
dc.relation.referencesW. Feng, C. Liu, B. Cheng, and J. Chen, “Secure and cost-effective controller deployment in multi-domain SDN with BAGUETTE,” J. Netw. Comput. Appl., vol. 178, no. December 2020, p. 102969, 2021, doi: 10.1016/j.jnca.2020.102969.spa
dc.relation.referencesZ. Guo and W. Feng, “RetroFlow : Maintaining Control Resiliency and Flow Programmability for Software-Defined WANs.”spa
dc.relation.referencesH. Song, S. Guo, P. Li, and G. Liu, “FCNR: Fast and Consistent Network Reconfiguration with low latency for SDN,” Comput. Networks, vol. 193, no. March, 2021, doi: 10.1016/j.comnet.2021.108113.spa
dc.relation.referencesY. Fan, L. Wang, and X. Yuan, “Controller placements for latency minimization of both primary and backup paths in SDNs,” Comput. Commun., vol. 163, no. February, pp. 58 35–50, 2020, doi: 10.1016/j.comcom.2020.09.001.spa
dc.relation.referencesL. M. Elguea and F. Martinez-Rios, “A New method to optimize BGP routes using SDN and reducing latency,” Procedia Comput. Sci., vol. 135, pp. 163–169, 2018, doi: 10.1016/j.procs.2018.08.162.spa
dc.relation.referencesE. Kawaguchi and N. Shinomiya, “Network Partitioning Algorithm for Minimizing Communication Latency in SDN,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2018-Octob, no. October, pp. 1529–1532, 2019, doi: 10.1109/TENCON.2018.8650370.spa
dc.relation.referencesL. Han, Z. Li, W. Liu, K. Dai, and W. Qu, “Minimum control latency of SDN controller placement,” Proc. - 15th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 10th IEEE Int. Conf. Big Data Sci. Eng. 14th IEEE Int. Symp. Parallel Distrib. Proce, pp. 2175–2180, 2016, doi: 10.1109/TrustCom.2016.0334.spa
dc.relation.referencesE. Calle, D. Martínez, M. Mycek, and M. Pióro, “Resilient backup controller placement in distributed SDN under critical targeted attacks,” Int. J. Crit. Infrastruct. Prot., vol. 33, p. 100422, 2021, doi: 10.1016/j.ijcip.2021.100422.spa
dc.relation.referencesB. California, “Centro de Investigación Científica y de Educación Superior de Ensenada , Baja California Maestría en Ciencias en Electrónica y Telecomunicaciones con orientación en Instrumentación y Control Diseño de un microaerogenerador de eje vertical,” 2018.spa
dc.relation.referencesR. Isaac, “Tabu search para el problema de ubicación del controlador en software defined networks,” 2019, [Online]. Available: http://hdl.handle.net/11634/16639.spa
dc.relation.referencesY. Moreno Gómez, “Algoritmo genético para el problema de la ubicación del controlador en una red definida por software (RDS),” 2020, [Online]. Available: http://hdl.handle.net/11634/22063spa
dc.relation.referencesR. I. Abuabara, F. Díaz-Sánchez, J. Arevalo Herrera, and I. Amigo, “Cost-Effective Tabu Search Algorithm for Solving the Controller Placement Problem in SDN,” pp. 109–130, 2020, doi: 10.4018/978-1-7998-1839-7.ch005.spa
dc.relation.referencesN. L. Dehghani, S. Zamanian, and A. Shafieezadeh, “Adaptive network reliability analysis: Methodology and applications to power grid,” Reliab. Eng. Syst. Saf., vol. 216, no. April, p. 107973, 2021, doi: 10.1016/j.ress.2021.107973.spa
dc.rightsAtribución-NoComercial 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5/co/*
dc.subject.lembIngenieríaspa
dc.subject.lembTelecomunicaciones -- Material y equipospa
dc.subject.lembEmpresasspa
dc.subject.proposalSDNspa
dc.subject.proposalCPPspa
dc.titleModelo del problema de la ubicación del controlador en redes SDN con consideraciones de costo, latencia y confiabilidad.spa
dc.typemaster thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2022yulianaandreaamayavelasquez.pdf
Tamaño:
1.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
Carta_aprobacion_facultad_Yuliana.pdf
Tamaño:
850.1 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad
Thumbnail USTA
Nombre:
Carta_autorizacion_autoarchivo_yulianaamaya_2022-1.pdf
Tamaño:
562.89 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta derechos de autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: