Estrategia de Control Basada en Aprendizaje de Máquina para el Transporte de Carga Suspendida Usando Múltiples Robots Aéreos No Tripulados

dc.contributor.advisorCalderón Chávez, Juan Manuel
dc.contributor.advisorAmaya, Sindy Paola
dc.contributor.authorMora Díaz, Viviana Alejandra
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000796425spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001767215spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=Gg2sofAAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0002-4471-3980spa
dc.contributor.orcidhttps://orcid.org/0000-0002-1714-1593spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2024-11-27T15:43:32Z
dc.date.available2024-11-27T15:43:32Z
dc.date.issued2024
dc.descriptionEl uso de vehículos aéreos no tripulados (UAVs) está cobrando una importancia cada vez mayor en diversos campos. Una de las aplicaciones más valiosas de esta tecnología es el transporte de cargas suspendidas, permitiendo mover objetos de manera segura y eficiente a lugares de difícil acceso, lo cual la hace particularmente útil para brindar asistencia en situaciones de emergencia, entregar suministros esenciales en regiones aisladas y facilitar servicios de distribución rápida en áreas urbanas. No obstante, esta estrategia presenta importantes desafíos asociados con la coordinación y control de varios UAVs, la estabilidad de la carga durante el transporte, y la capacidad de respuesta ante perturbaciones externas que puedan afectar su operación. Este proyecto se enfoca en abordar el problema del transporte de carga suspendida utilizando múltiples UAVs, acudiendo a diferentes enfoques basados en el aprendizaje automático, con el fin de proponer soluciones a las limitantes que posee esta aplicación y buscando aprovechar sus capacidades. El documento está estructurado de la siguiente manera: en el Capítulo 2, se describe el problema, analizando las limitaciones actuales y planteando una pregunta de investigación que orientará el desarrollo del proyecto. El Capítulo 3 presenta el estado del arte, explorando los trabajos previos y las soluciones existentes en la literatura especializada. En los Capítulos 4 y 5, se detalla la justificación del proyecto y su impacto social, además de definir los objetivos específicos que se espera alcanzar. Los capítulos siguientes se centran en el marco teórico y la implementación de la solución propuesta. Por último, en el Capítulo 10 se exponen los resultados obtenidos y en el 11 se extraen conclusiones del trabajo realizado. Esta estructura facilita una aproximación metódica y exhaustiva a los diferentes aspectos del problema, ofreciendo una perspectiva clara de las metodologías utilizadas y los avances logrados en el ámbito del control de UAVs con carga suspendida. De esta forma, se espera contribuir notablemente al desarrollo de soluciones más eficientes y efectivas en este campo de creciente relevancia tecnológica y social.spa
dc.description.abstractThe use of Unmanned Aerial Vehicles (UAVs) is gaining increasing significance across various fields. One of the most valuable applications of this technology is the transportation of suspended loads, enabling the safe and efficient movement of objects to hard-to-reach locations. This makes it particularly useful for providing assistance in emergency situations, delivering essential supplies to remote regions, and facilitating rapid distribution services in urban areas. However, this approach presents significant challenges related to the coordination and control of multiple UAVs, the stability of the load during transport, and responsiveness to external disturbances that may impact their operation. This project focuses on addressing the problem of suspended load transportation using multiple UAVs by leveraging various machine learning-based approaches. The aim is to propose solutions to the limitations of this application while maximizing its potential capabilities. The document is structured as follows: Chapter 2 describes the problem, analyzing current limitations and posing a research question that will guide the project's development. Chapter 3 presents the state of the art, exploring previous works and existing solutions in specialized literature. Chapters 4 and 5 provide the project's justification and its social impact, as well as defining the specific objectives to be achieved. Subsequent chapters focus on the theoretical framework and the implementation of the proposed solution. Finally, Chapter 10 outlines the results obtained, and Chapter 11 draws conclusions from the work conducted. This structure facilitates a methodical and comprehensive approach to the various aspects of the problem, offering a clear perspective on the methodologies employed and the advancements achieved in the field of UAV control for suspended load transportation. In this way, the project aims to make a significant contribution to the development of more efficient and effective solutions in this area of growing technological and social importance.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMora Díaz V. A. (2024). Estrategia de Control Basada en Aprendizaje de Máquina para el Transporte de Carga Suspendida Usando Múltiples Robots Aéreos No Tripulados. [Trabajo de Grado, Universidad Santo Tomás. Repositorio Institucional.]spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/58696
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesB. Anbaro˘ glu. «PARCEL DELIVERY in AN URBAN ENVIRONMENT USING UNMANNED AERIAL SYSTEMS: A VISION PAPER». En: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4.4W4 (2017), págs. 73-79. ISSN: 21949050. DOI: 10.5194/isprs-annals-IV-4-W4-73-2017.spa
dc.relation.referencesMario Cimino et al. «Adaptive exploration of a uavs swarm for distributed targets detection and tracking». En: Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (2019). DOI: 10.5220/0007581708370844.spa
dc.relation.referencesEnrique Paiva et al. «A Review of UAVs Topologies and Control Techniques». En: IEEE Robotics and Automation Magazine (2021), págs. 1-6. DOI: 10.1109/icaacca51523. 2021.9465186.spa
dc.relation.referencesAsharul Islam Khan y Yaseen Al-Mulla. «Unmanned aerial vehicle in the machine learning environment». En: Procedia Computer Science 160.November (2019), págs. 46-53. ISSN: 18770509. DOI: 10.1016/j.procs.2019.09.442. URL: https://doi.org/10. 1016/j.procs.2019.09.442.spa
dc.relation.referencesDaniel K.D. Villa, Alexandre S. Brandão y Mário Sarcinelli-Filho. «A Survey on Load Transportation Using Multirotor UAVs». En: Journal of Intelligent and Robotic Systems: Theory and Applications 98.2 (2020), págs. 267-296. DOI: 10.1007/s10846-019-01088- w.spa
dc.relation.referencesD E Drones Para et al. «Fotogrametría de drones para la prevención de deslizamientos de tierra en la ciudad de méxico». En: Reder 4.2 (2020), págs. 85-96. ISSN: 0719-8477. URL: http://www.revistareder.com/ojs/index.php/reder/article/view/52.spa
dc.relation.referencesTomasz Zwegli´ nski. «The use of drones in disaster aerial needs reconnaissance and damage assessment-Three-dimensional modeling and orthophoto map study». En: Sustainability (Switzerland) 12.15 (2020), págs. 1-20. ISSN: 20711050. DOI: 10.3390/su12156080.spa
dc.relation.referencesJie Huang et al. «On Unmanned Aerial Vehicles Light Show Systems: Algorithms, Software and Hardware». En: Applied Sciences 11.16 (2021), pág. 7687. DOI: 10 . 3390 / app11167687.spa
dc.relation.referencesGuilherme V. Raffo y Marcelino M. De Almeida. «Nonlinear robust control of a quadrotor UAV for load transportation with swing improvement». En: Proceedings of the American Control Conference 2016-July (2016), págs. 3156-3162. ISSN: 07431619. DOI: 10.1109/ACC. 2016.7525403.spa
dc.relation.referencesKoushil Sreenath, Nathan Michael y Vijay Kumar. «Trajectory generation and control of a quadrotor with a cable-suspended load - A differentially-flat hybrid system». En: Proceedings - IEEE International Conference on Robotics and Automation (2013), págs. 4888-4895. ISSN: 10504729. DOI: 10.1109/ICRA.2013.6631275.spa
dc.relation.referencesFarhad A. Goodarzi, Daewon Lee y Taeyoung Lee. «Geometric stabilization of a quadrotor UAV with a payload connected by flexible cable». En: Proceedings of the American Control Conference June (2014), págs. 4925-4930. ISSN: 07431619. DOI: 10.1109/ACC.2014. 6859419. arXiv: 1309.6717.spa
dc.relation.referencesRafael José. «Load transportation using rotary-wing UAVs». Tesis doct. 2015.spa
dc.relation.referencesIvana Palunko, Patricio Cruz y Rafael Fierro. «Agile load transportation : Safe and efficient load manipulation with aerial robots». En: IEEE Robotics and Automation Magazine 19.3 (2012), págs. 69-79. ISSN: 10709932. DOI: 10.1109/MRA.2012.2205617.spa
dc.relation.referencesPedro Outeiro, Carlos Cardeira y Paulo Oliveira. «MMAC Height Control System of a Quadrotor for Constant Unknown Load Transportation». En: IEEE International Conference on Intelligent Robots and Systems (2018), págs. 4192-4197. ISSN: 21530866. DOI: 10.1109/ IROS.2018.8594215.spa
dc.relation.referencesMohammadhossein Zare, Farshad Pazooki y Shahram Etemadi Haghighi. «Hybrid controller of Lyapunov-based and nonlinear fuzzy-sliding mode for a quadrotor slung load system». En: Engineering Science and Technology, an International Journal (2021). ISSN: 22150986. DOI: 10.1016/j.jestch.2021.07.001. URL: https://doi.org/10. 1016/j.jestch.2021.07.001.spa
dc.relation.referencesJesús Enrique Sierra-García y Matilde Santos. «Intelligent control of an UAV with a cablesuspended load using a neural network estimator». En: Expert Systems with Applications 183.January 2020 (2021), pág. 115380. ISSN: 09574174. DOI: 10.1016/j.eswa.2021. 115380. URL: https://doi.org/10.1016/j.eswa.2021.115380.spa
dc.relation.referencesAleksandra Faust et al. «Automated aerial suspended cargo delivery through reinforcement learning». En: Artificial Intelligence 247 (2017), págs. 381-398. ISSN: 00043702. DOI: 10.1016/j.artint.2014.11.009. URL: http://dx.doi.org/10.1016/j. artint.2014.11.009.spa
dc.relation.referencesR. P. K. Jain et al. «Transportation of Cable Suspended Load using Unmanned Aerial Vehicles: A Real-time Model Predictive Control approach». En: (2015). URL: http:// resolver.tudelft.nl/uuid:4c6b4a94-4f15-4e67-8c30-eb8156aab406.spa
dc.relation.referencesAbdulghafoor Salehzadeh Aghdam et al. «Cooperative load transport with movable load center of mass using multiple quadrotor UAVs». En: 2016 4th International Conference on Control, Instrumentation, and Automation, ICCIA 2016 January (2016), págs. 23-27. DOI: 10.1109/ICCIAutom.2016.7483130.spa
dc.relation.referencesAnunay Gupta et al. «Advances of UAVs toward Future Transportation : The State-ofthe- Art , Challenges , and Opportunities». En: MDPI Multidisciplinary Digital Publishing Institute (2021), págs. 326-350.spa
dc.relation.referencesManuele Brambilla et al. «Swarm robotics: A review from the swarm engineering perspective ». En: Swarm Intelligence 7.1 (2013), págs. 1-41. ISSN: 19353820. DOI: 10.1007/ s11721-012-0075-2.spa
dc.relation.referencesMelanie Schranz et al. «Swarm Robotic Behaviors and Current Applications». En: Frontiers in Robotics and AI 7.April (2020), pág. 20. ISSN: 22969144. DOI: 10.3389/frobt.2020.00036.spa
dc.relation.referencesFrancisco Rossomando et al. «Aerial Load Transportation with Multiple Quadrotors Based on a Kinematic Controller and a Neural SMC Dynamic Compensation». En: Journal of Intelligent and Robotic Systems: Theory and Applications 100.2 (2020), págs. 519-530. ISSN: 15730409. DOI: 10.1007/s10846-020-01195-z.spa
dc.relation.referencesGustavo A. Cardona y Juan M. Calderon. «Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations». En: Applied Sciences (Switzerland) 9.8 (2019). ISSN: 20763417. DOI: 10.3390/app9081702.spa
dc.relation.referencesXiaoxuan Li, Jianlei Zhang y Jianda Han. «Trajectory planning of load transportation with multi-quadrotors based on reinforcement learning algorithm». En: Aerospace Science and Technology 116 (2021), pág. 106887. ISSN: 12709638. DOI: 10.1016/j.ast.2021. 106887. URL: https://doi.org/10.1016/j.ast.2021.106887.spa
dc.relation.referencesAlfred Sánchez Castañeda. Trascendencia de la industria 4.0. 2019, págs. 33-69.spa
dc.relation.referencesHéctor Tillerias, Juan Segura y Gabriela Álvarez. «Innovation, Evolution and History of Technology in Industry». En: Athenea 1.1 (2020), págs. 14-21. DOI: 10.47460/athenea.v1i1.2.spa
dc.relation.referencesDavid Mhlanga. «Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies?» En: Sustainability (Switzerland) 13.11 (2021). ISSN: 20711050. DOI: 10.3390/su13115788.spa
dc.relation.referencesMatthew N. O. Sadiku, Mahamadou Tembely y Sarhan M. Musa. «Swarm Intelligence: A Primer». En: International Journal of Advanced Research in Computer Science and Software Engineering 8.5 (2018), pág. 100. ISSN: 22776451. DOI: 10.23956/ijarcsse.v8i5.681.spa
dc.relation.referencesS. Amici et al. «Volcanic Environments Monitoring By Drones Mud Volcano Case Study». En: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W2.January 2014 (2013), págs. 5-10. ISSN: 1682-1750. DOI: 10.5194/ isprsarchives-xl-1-w2-5-2013.spa
dc.relation.referencesAndrey V. Savkin y Hailong Huang. «Navigation of a Network of Aerial Drones for Monitoring a Frontier of a Moving Environmental Disaster Area». En: IEEE Systems Journal 14.4 (2020), págs. 4746-4749. ISSN: 19379234. DOI: 10.1109/JSYST.2020.2966779.spa
dc.relation.referencesR. B. Kalamkar et al. «Drone and its Applications in Agriculture». En: International Journal of Current Microbiology and Applied Sciences 9.6 (2020), págs. 3022-3026. ISSN: 23197692. DOI: 10.20546/ijcmas.2020.906.363.spa
dc.relation.referencesS. Truog et al. «Medical Cargo Drones in Rural Dominican Republic». En: Inter-American Development Bank: IDB 148 (2020), págs. 148-162.spa
dc.relation.referencesJ. O. Choi y D. B. Kim. «A new UAV-based module lifting and transporting method: Advantages and challenges». En: Proceedings of the 36th International Symposium on Automation and Robotics in Construction, ISARC 2019 March 2020 (2019), págs. 645-650. DOI: 10.22260/isarc2019/0086.spa
dc.relation.referencesUNCTAD. «How COVID-19 is changing the world : a statistical perspective». En: Committee for the Coordination of Statistical (2020), págs. 1-90. URL: https://unstats.un.org/unsd/ccsa/%0Ahttps://unstats.un.org/unsd/ccsa/documents/covid19-report-ccsa.pdf.spa
dc.relation.referencesArledison Gómez Molina y Luis Molina Pérez. «Incidencias, causas y efectos de la pandemia covid-19 en la economía colombiana». En: Creative Commons (2020), págs. 1-12.spa
dc.relation.referencesEfraín Quicaña. «Efectos de la COVID-19 en la economía rural de América Latina». En: Organización Internacional del Trabajo. (2020), págs. 1-30. URL: https://www.ilo.org/wcmsp5/groups/public/---americas/---ro-lima/documents/publication/wcms_760656.pdf.spa
dc.relation.referencesOficina de las Naciones Unidas para la Coordinación de Asuntos Humanitarios OCHA. «COLOMBIA : Impacto humanitario por la COVID-19». En: Oficina de Naciones Unidas para la Coordinación de Asuntos Humanitarios 10.10 (2020), págs. 1-12. ISSN: 1098-6596. arXiv: arXiv:1011.1669v3. URL: https://reliefweb.int/sites/reliefweb.int/files/resources/15072020_colombia_informe_de_situacion_no_10_impacto_covid-19_vf.pdf.spa
dc.relation.referencesGaurav Singhal, Babankumar Bansod y Lini Mathew. «Unmanned Aerial Vehicle Classification, Applications and Challenges: A Review Remote sensing for Precision agriculture View project Remote sensing for Precision Agriculture View project Babankumar shyam Bansod Central Scientific Instruments Organization Unmanned Aerial Vehicle classification, Applications and challenges: A Review». En: (2018). DOI: 10.20944/preprints201811.0601.v1. URL: http://revistapesquisa.fapesp.br.spa
dc.relation.referencesSeunghwan Jo et al. «Experimental Study of In-Flight Deployment of a Multicopter from a Fixed-Wing UAV». En: International Journal of Aeronautical and Space Sciences 20 (3 sep. de 2019), págs. 697-709. ISSN: 20932480. DOI: 10.1007/s42405-019-00148-7.spa
dc.relation.referencesAdemola Abdulkareem et al. «Modeling and Nonlinear Control of a Quadcopter for Stabilization and Trajectory Tracking». En: Journal of Engineering (United Kingdom) 2022 (2022). ISSN: 23144912. DOI: 10.1155/2022/2449901.spa
dc.relation.referencesMoad Idrissi, Fawaz Annaz y Mohammad Salami. «Mathematical Physical Modelling of a Quadrotor UAV». En: Institute of Electrical y Electronics Engineers Inc., abr. de 2021, págs. 206-212. ISBN: 9781665449861. DOI: 10.1109/ICCAR52225.2021.9463447.spa
dc.relation.referencesAnshuman Srinivasan et al. Modeling, Design and Control of a 6 D-O-F Quadcopter Fleet With Platooning Control. 2021.spa
dc.relation.referencesOussama Bouaiss, Raihane Mechgoug y Riadh Ajgou. «Modeling, control and simulation of quadrotor UAV». En: Institute of Electrical y Electronics Engineers Inc., mayo de 2020, págs. 340-345. ISBN: 9781728158358. DOI: 10.1109/CCSSP49278.2020.9151687.spa
dc.relation.referencesAkram Eltrabyly, Dalil Ichalal y Said Mammar. «Fault-tolerant model predictive control trajectory tracking for a quadcopter with 4 faulty actuators». En: vol. 54. Elsevier B.V., 2021, págs. 141-146. DOI: 10.1016/j.ifacol.2021.10.024.spa
dc.relation.referencesVijay Kumar. Robotics: Aerial robotics. 2016. URL: https://www.coursera.org/ learn/robotics-flight.spa
dc.relation.referencesQuan Quan. Introduction to Multicopter Design and Control. 2017, págs. 47-143. ISBN: 978-981-10-3382-7. DOI: 10.1007/978-981-10-3382-7.spa
dc.relation.referencesAbid Sulficar et al. Modeling, Simulation and Complete Control of a Quadcopter. National Institute of Technology Karnataka, mayo de 2017.spa
dc.relation.referencesDanielWarren Mellinger. Trajectory Generation and Control for Quadrotors. University of Pennsylvania, 2012. URL: https://repository.upenn.edu/edissertations/547.spa
dc.relation.referencesMartí Pomés Arnau. «Model Based Control of Quadcopters». École Polytechnique Fédérale De Lausanne, jul. de 2016, págs. 30-45. URL: https://upcommons.upc.edu/ bitstream / handle / 2117 / 99817 / TFM _ Marti _ POMES . pdf ? sequence = 1 & isAllowed=y.spa
dc.relation.referencesKimon P Valavanis y George J Vachtsevanos. Handbook of Unmanned Aerial Vehicles. 1.a ed. Springer Dordrecht, 2015. ISBN: 978-90-481-9707-1. DOI: 10.1007/978-90-481-9707-1.spa
dc.relation.referencesNathan Michael et al. «The GRASP multiple micro-UAV testbed». En: IEEE Robotics and Automation Magazine 17 (3 sep. de 2010), págs. 56-65. ISSN: 10709932. DOI: 10.1109/MRA.2010.937855.spa
dc.relation.referencesTaeyoung Lee, Melvin Leok y N Harris Mcclamroch. Geometric Tracking Control of a Quadrotor UAV on SE(3). IEEE Conference on Decision y Control, 2010. ISBN: 9781424477449.spa
dc.relation.referencesScott Camazine et al. «Chapter 1 – what is self-organization?» En: Self-Organization in Biological Systems (dic. de 2001), págs. 7-14. DOI: 10.1515/9780691212920-003.spa
dc.relation.referencesIñaki Navarro y Fernando Matía. «An Introduction to Swarm Robotics». En: ISRN Robotics 2013 (sep. de 2013), págs. 1-10. DOI: 10.5402/2013/608164.spa
dc.relation.referencesSatchidananda Dehuri, Sung-Bae Cho y Ashish Ghosh. «Wasp: A multi-agent system for multiple recommendations problem». En: 2008 4th International Conference on Next Generation Web Services Practices (2008). DOI: 10.1109/nwesp.2008.24.spa
dc.relation.referencesMitch Campion, Prakash Ranganathan y Saleh Faruque. «Uav swarm communication and control architectures: A review». En: Journal of Unmanned Vehicle Systems 7 (2 2019), págs. 93-106. ISSN: 22913467. DOI: 10.1139/juvs-2018-0009.spa
dc.relation.referencesFrank L. Lewis et al. Introduction to Synchronization in Nature and Physics and Cooperative Control for Multi-Agent Systems on Graphs. Springer, 2014, págs. 2-65. ISBN: 978-1-4471- 5573-7. DOI: 10.1007/978-1-4471-5574-4_1.spa
dc.relation.referencesAhmed G. Gad. «Correction to: Particle swarm optimization algorithm and its applications: A systematic review». En: Archives of Computational Methods in Engineering 30.5 (mayo de 2022), págs. 3471-3471. DOI: 10.1007/s11831-022-09762-3.spa
dc.relation.referencesGonçalo Pereira. «Particle Swarm Optimization». En: (mayo de 2011).spa
dc.relation.referencesArie Nakhmani. Modern control: State-space analysis and design methods. McGraw Hill LLC, 2020.spa
dc.relation.referencesWeibin Gu et al. «A Survey of Artificial Neural Networks with Model-based Control Techniques for Flight Control of Unmanned Aerial Vehicles». En: 2019 International Conference on Unmanned Aircraft Systems (ICUAS). 2019, págs. 362-371. DOI: 10.1109/ICUAS.2019.8797853.spa
dc.relation.referencesChang Chieh Hang, Tong Heng Lee y Weng Khuen Ho. «Adaptive Control». En: Control Theory for Physicists (1993). URL: https://api.semanticscholar.org/CorpusID:15013733.spa
dc.relation.referencesCiro Mauricio Larco Barros, Ramón Costa Castelló y Josep M. Olm. «Control adaptativo por modelo de referencia para un inversor basado en LCL con síntesis de controlador mínima ». En: Actas de las XXXVII Jornadas de Automática 7, 8 y 9 de septiembre de 2016, Madrid (2022). URL: https://api.semanticscholar.org/CorpusID:246856021.spa
dc.relation.referencesVadim Kramar, Aleksey Kabanov y Sergey Dudnikov. «A Mathematical Model for a Conceptual Design and Analyses of UAV Stabilization Systems». En: Fluids 6.5 (2021). ISSN: 2311-5521. DOI: 10.3390/fluids6050172. URL: https://www.mdpi.com/2311-5521/6/5/172.spa
dc.relation.referencesMaitreyee Dutta et al. «MRAC-based dynamic consensus of linear systems with biased measurements over directed networks». En: Automatica 161 (2024), pág. 111498. ISSN: 0005-1098. DOI: https : / / doi . org / 10 . 1016 / j . automatica . 2023 . 111498. URL: https://www.sciencedirect.com/science/article/pii/S0005109823006684.spa
dc.relation.referencesBocheng Zhao et al. «Graph-Based Multi-agent Reinforcement Learning for Large-Scale UAVs Swarm System Control». En: Aerospace Science and Technology (2024). URL: https://api.semanticscholar.org/CorpusID:269426068.spa
dc.relation.referencesRichard S. Sutton y Andrew G. Barto. Reinforcement learning: An introduction. The MIT Press, 2020.spa
dc.relation.referencesJongkwan Choi et al. «Modular Reinforcement Learning for Autonomous UAV Flight Control». En: Drones 7.7 (2023). ISSN: 2504-446X. DOI: 10.3390/drones7070418. URL:https://www.mdpi.com/2504-446X/7/7/418.spa
dc.relation.referencesZizuo Zhang et al. «Control of UAV quadrotor using reinforcement learning and robust controller». En: IET Control Theory & Applications 17.12 (2023), págs. 1599-1610. DOI: https://doi.org/10.1049/cth2.12496. eprint: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cth2.12496. URL: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cth2.12496.spa
dc.relation.referencesChia-Pu Wang y Stephen S. Rappaport. «Adaptive gain control (Corresp.)» En: IEEE Trans. Inf. Theory 17 (1971), págs. 625-627. URL: https://api.semanticscholar.org/CorpusID:24737790.spa
dc.relation.referencesAida Kamalifar et al. «Design of robust model reference adaptive controller for a wider class of nonlinear systems». En: Iranian Journal of Science and Technology, Transactions of Electrical Engineering 46.1 (ago. de 2021), págs. 127-139. DOI:10.1007/s40998-021-00451-8.spa
dc.relation.referencesJulián Chaves Palacios. «Desarrollo tecnológico en la Primera Revolución Industrial». En: Norba. Revista de historia 17.17 (2004), págs. 93-109. ISSN: 0213-375X.spa
dc.relation.referencesJulian Förster. «System Identification of the Crazyflie 2.0 Nano Quadrocopter». Institute for Dynamic Systems y Control, 2015. URL: https://doi.org/10.3929/ethz-b-000214143.spa
dc.relation.referencesHector Garcia Maldonado et al. «Adaptation of gains for a PID controller for the gradient descendent method: Design, simulation and comparison with classic PID controller». En: 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (nov. de 2018). DOI: 10.1109/ropec.2018.8661445.spa
dc.relation.referencesAndrew Farley, JieWang y Joshua Marshall. «How to pick a mobile robot simulator: A quantitative comparison of CoppeliaSim, Gazebo, MORSE andWebots with a focus on the accuracy of motion simulations». En: Simulation Modelling Practice and Theory 120 (jul. de 2022), pág. 102629. DOI: 10.1016/j.simpat.2022.102629.spa
dc.relation.referencesJack Collins et al. «A Review of Physics Simulators for Robotic Applications». En: IEEE Access PP (mar. de 2021), págs. 1-1. DOI: 10.1109/ACCESS.2021.3068769.spa
dc.relation.referencesCora A. Dimmig et al. Survey of Simulators for Aerial Robots. 2024. arXiv: 2311.02296[cs.RO].spa
dc.relation.referencesPablo Martínez Campos. «Simulación Cinemática y Dinámica del Robot Hexápodo Escalador Romerín». Tesis de mtría. Madrid: Universidad Politécnica de Madrid, feb. de 2019.spa
dc.relation.referencesZiming Chen et al. «A Survey on Open-Source Simulation Platforms for Multi-Copter UAV Swarms». En: Robotics 12.2 (2023). ISSN: 2218-6581. DOI: 10.3390/robotics12020053. URL: https://www.mdpi.com/2218-6581/12/2/53.spa
dc.relation.referencesG. A. Cardona et al. «Robust Adaptive Synchronization of Interconnected Heterogeneous Quadrotors Transporting a Cable-Suspended Load». En: 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021, págs. 31-37. DOI: 10.1109/ICRA48506.2021.9561513.spa
dc.relation.referencesG. A. Cardona et al. «Autonomous Navigation for Exploration of Unknown Environments and Collision Avoidance in Mobile Robots Using Reinforcement Learning». En: 2019 SoutheastCon. Abr. de 2019, págs. 1-7. DOI: 10.1109/SoutheastCon42311.2019.9020521.spa
dc.relation.referencesNicolás Gómez et al. «Leader-follower Behavior in Multi-agent Systems for Search and Rescue Based on PSO Approach». En: SoutheastCon 2022. 2022, págs. 413-420. DOI:10.1109/SoutheastCon48659.2022.9764133.spa
dc.relation.referencesWilson O. Quesada et al. «Leader-Follower Formation for UAV Robot Swarm Based on Fuzzy Logic Theory». En: Artificial Intelligence and Soft Computing: 17th International Conference, ICAISC 2018, Zakopane, Poland, June 3-7, 2018, Proceedings, Part II. <confloc> Zakopane, Poland</conf-loc>: Springer-Verlag, 2018, págs. 740-751. ISBN: 978-3-319-91261-5. DOI: 10.1007/978-3-319-91262-2_65. URL: https://doi.org/10.1007/978-3-319-91262-2_65.spa
dc.relation.referencesRahul Parhi y Robert D. Nowak. «The Role of Neural Network Activation Functions». En: IEEE Signal Processing Letters 27 (2019), págs. 1779-1783. URL: https : / / api.semanticscholar.org/CorpusID:220794266.spa
dc.relation.referencesChitra G. Desai. «Comparative Analysis of Optimizers in Deep Neural Networks». En: 2020. URL: https://api.semanticscholar.org/CorpusID:254856073.spa
dc.relation.referencesOlaf Bunke y Bernd Droge. «Estimators of the Mean Squared Error of Prediction in Linear Regression». En: Technometrics 26 (1984), págs. 145-155. URL: https://api.semanticscholar.org/CorpusID:121843375.spa
dc.relation.referencesJavier A Cardenas et al. «Intelligent Position Controller for Unmanned Aerial Vehicles (UAV) Based on Supervised Deep Learning». En: Machines 11.6 (2023), pág. 606.spa
dc.relation.referencesDiego Patiño et al. «Learning to Navigate in Turbulent Flows With Aerial Robot Swarms: A Cooperative Deep Reinforcement Learning Approach». En: IEEE Robotics and Automation Letters 8.7 (2023), págs. 4219-4226.spa
dc.relation.referencesJavier Alexis Cárdenas et al. «Optimal PID ø axis Control for UAV Quadrotor based on Multi-Objective PSO». En: IFAC-PapersOnLine 55.14 (2022), págs. 101-106.spa
dc.relation.referencesDavid Paez et al. «Distributed particle swarm optimization for multi-robot system in search and rescue operations». En: IFAC-PapersOnLine 54.4 (2021), págs. 1-6.spa
dc.relation.referencesGustavo A Cardona et al. «Robust adaptive synchronization of interconnected heterogeneous quadrotors transporting a cable-suspended load». En: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021, págs. 31-37.spa
dc.relation.referencesGustavo A Cardona et al. «Adaptive Multi-Quadrotor Control for Cooperative Transportation of a Cable-Suspended Load». En: 2021 European Control Conference (ECC). IEEE. 2021, págs. 696-701.spa
dc.relation.referencesJosé León et al. «Rendezvous Consensus Algorithm Applied to the Location of Possible Victims in Disaster Zones». En: Artificial Intelligence and Soft Computing: 17th International Conference, ICAISC 2018, Zakopane, Poland, June 3-7, 2018, Proceedings, Part II 17. Springer. 2018, págs. 700-710.spa
dc.relation.referencesWilson O Quesada et al. «Leader-follower formation for UAV robot swarm based on fuzzy logic theory». En: Artificial Intelligence and Soft Computing: 17th International Conference, ICAISC 2018, Zakopane, Poland, June 3-7, 2018, Proceedings, Part II 17. Springer. 2018, págs. 740-751.spa
dc.relation.referencesJuan D Pabon et al. «Event-Triggered Control for Weight-Unbalanced Directed Robot Networks». En: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, págs. 5831-5836.spa
dc.relation.referencesLuis G Jaimes y Juan M Calderon. «An UAV-based incentive mechanism for Crowdsensing with budget constraints». En: 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC). IEEE. 2020, págs. 1-6.spa
dc.relation.referencesin Wang et al. «Incentive mechanism for vehicular crowdsensing with budget constrains ». En: 2020 SoutheastCon. IEEE. 2020, págs. 1-7.spa
dc.relation.referencesLuis G Jaimes, Janar Kahr y Juan M Calderon. «An incentive mechanism for uavs crowdsensing markets, a negotiation approach». En: IFAC-PapersOnLine 54.13 (2021), págs. 274-279.spa
dc.relation.referencesGustavo A Cardona et al. «Visual victim detection and quadrotor-swarm coordination control in search and rescue environment». En: International Journal of Electrical and Computer Engineering 11.3 (2021), pág. 2079.spa
dc.relation.referencesJose León et al. «Robot swarms theory applicable to seek and rescue operation». En: Intelligent Systems Design and Applications: 16th International Conference on Intelligent Systems Design and Applications (ISDA 2016) held in Porto, Portugal, December 16-18, 2016. Springer. 2017, págs. 1061-1070.spa
dc.relation.referencesPaweł Fritzkowski y Henryk Kami´ nski. «Dynamics of a rope modeled as a multi-body system with elastic joints». En: Computational Mechanics 46.6 (ago. de 2010), págs. 901-909. DOI: 10.1007/s00466-010-0524-y.spa
dc.relation.referencesURL: https://manual.coppeliarobotics.com/en/joints.htm.spa
dc.relation.referencesURL: https://manual.coppeliarobotics.com/en/jointModes.htm.spa
dc.relation.referencesDic. de 2016. URL: https://forum.coppeliarobotics.com/viewtopic.php? t=6337.spa
dc.relation.referencesURL: https://manual.coppeliarobotics.com/en/designingDynamicSimulations. htm.spa
dc.relation.referencesDale E. Chimenti y Stuart S. Ochs. «3-D simulator for moments of inertia». En: Computer Applications in Engineering Education 7 (1999). URL: https://api.semanticscholar.org/CorpusID:121691821.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordUAVspa
dc.subject.keywordArtificial Neural Networkspa
dc.subject.keywordANNspa
dc.subject.keywordUnmanned Aerial Vehiclespa
dc.subject.keywordPIDspa
dc.subject.keywordModel Reference Adaptive Controlspa
dc.subject.keywordMRACspa
dc.subject.keywordDronespa
dc.subject.keywordSuspended Loadspa
dc.subject.keywordRobotic Swarmspa
dc.subject.keywordRobotics Controlspa
dc.subject.lembIngenieríaspa
dc.subject.lembIngeniería electrónicaspa
dc.subject.lembTransporte de cargaspa
dc.subject.proposalVANTspa
dc.subject.proposalPIDspa
dc.subject.proposalVehículo Aéreo No Tripuladospa
dc.subject.proposalControl Adaptativo Basado en un Modelo de Referenciaspa
dc.subject.proposalEnjambre robóticospa
dc.subject.proposalRobóticaspa
dc.titleEstrategia de Control Basada en Aprendizaje de Máquina para el Transporte de Carga Suspendida Usando Múltiples Robots Aéreos No Tripuladosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2024vivianamora.pdf
Tamaño:
5.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartadefacultad.pdf
Tamaño:
37.25 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartadederechosdeautor.pdf
Tamaño:
957.45 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: