Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers

dc.contributor.advisorTorres Pinzón, Carlos Andrés
dc.contributor.advisorFlores Bahamonde, Freddy Arturo
dc.contributor.authorRoncancio Carreño, Brayan Alejandro
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=aCsJYTEAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0001-9643-5057spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2023-06-26T14:49:33Z
dc.date.available2023-06-26T14:49:33Z
dc.date.issued2023-06-15
dc.descriptionDebido a la alta demanda de servicios web y almacenamiento en la nube, es necesario el diseño de ‘Data Centers’ con mayor cantidad de Racks, los cuales alojan servidores y discos duros; en base al crecimiento exponencial de ‘Data Centers’ se estimó que para el año 2030 representaran el consumo del 51% de la energía generada a nivel global. Por ello es necesario elaborar fuentes de suministro de energía con alta eficiencia. Se propone en este trabajo de grado, la implementación de dos tecnologías de convertidores que tienen como característica principal la alta eficiencia, se trata del convertidor DCx y el convertidor PPC. Estos serán utilizados para reducir 12 V al voltaje de la carga, que en este caso está representada por discos duros y servidores, cuyos voltajes de funcionamiento son 1.8 V. El convertidor DCx está compuesto de un generador de onda cuadrada, una red resonante, un transformador y su respectiva rectificación, por ende, no es necesario la elaboración de un sistema de control para este convertidor. Caso contrario se presenta con el convertidor PPC, el cual modifica el voltaje a la salida dependiendo el ancho de pulso de los dispositivos conmutadores; por ello, es necesario realizar control sobre dicha variable para poder obtener la salida requerida. Para el sistema de control, se elaboran 3 técnicas, una básica (control en frecuencia), una avanzada (control LMI) y otra por medio de algoritmos de optimización (PSO). Se realiza el diseño y se procede a simular cada uno de los controladores con el fin de identificar aquel con mejores prestaciones. La estructura del convertidor general está definida por el convertidor PPC y en serie se encuentra conectado el convertidor DCx; en donde el convertidor PPC realiza la reducción de tensión de 12 V a 7.2V y el DCx acota la tensión a 1.8V. Se implementa el convertidor general con cada uno de los controladores mencionados, se realizan simulaciones con perturbaciones y valores de componentes semejantes a la realidad para identificar el correcto funcionamiento del sistema y obtener el controlador que ofrece mejores resultados. Finalmente, se presenta una versión inicial de una PCB para llevar a cabo su implementación física. No es una versión definitiva, ya que ciertos componentes es necesario realizar su fabricación ya que no son comerciales, por ende, las dimensiones plasmadas puede que sean o no acertadas.spa
dc.description.abstractDue to the high demand for web services and cloud storage, it is necessary to design ‘Data Centers’ with a greater number of Racks, which house servers and hard disks; based on the exponential growth of ‘Data Centers’, it is estimated that by 2030 they will represent the consumption of 51% of the energy generated globally. Therefore, it is necessary to develop energy supply sources with high efficiency. It is proposed in this degree work, the implementation of two converter technologies that have as main characteristic the high efficiency, the DCx converter and the PPC converter. These will be used to reduce 12 V to the voltage of the load, which in this case is represented by hard disks and servers, whose operating voltages are 1.8 V. The DCx converter is composed of a square wave generator, a resonant network, a transformer and its respective rectification, therefore, it is not necessary to develop a control system for this converter. The opposite case occurs with the PPC converter, which modifies the output voltage depending on the pulse width of the switching devices; therefore, it is necessary to perform control over this variable to obtain the required output. For the control system, 3 techniques are developed, a basic one (frequency control), an advanced one (LMI control) and another one by means of optimization algorithms (PSO). The design is carried out and each of the controllers is simulated in order to identify the one with the best performance. The structure of the general converter is defined by the PPC converter and the DCx converter is connected in series; where the PPC converter performs the voltage reduction from 12V to 7.2V and the DCx reduces the voltage to 1.8V. The general converter is implemented with each of the mentioned controllers, simulations are performed with disturbances and component values similar to reality to identify the correct operation of the system and obtain the controller that offers the best results. Obtaining the best performance with the PSO controller due to the way of optimizing the values for the control system. Finally, an initial version of a PCB is presented to carry out its physical implementation. It is not a definitive version, since certain components need to be manufactured since they are not commercial, therefore, the dimensions shown may or may not be correct.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRoncancio Carreño, B. A. (2023). Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/50837
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesXin Li and Shuai Jiang. Google 48V Power Architecture. Apec, 2017 [Online]. Available:http://apec.dev.itswebs.com/Portals/0/APEC 2017 Files/Plenary/APEC Plenary Google.pdf?ver=2017-04-24-091315-930&timestamp=1495563027516.spa
dc.relation.referencesMohamed H. Ahmed, Ahmed Nabih, Fred C. Lee, and Qiang Li. High-efficiency, high-density isolated/Regulated 48V bus converter with a novel planar magnetic structure. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:468–475, 2019spa
dc.relation.referencesRojas Villarroel and Julián Ariel. CARGA RÁPIDA DE VEHÍCULOS ELÉCTRICO. 2019.spa
dc.relation.referencesDavid González Bravo. Cargador De Baterías Mediante Convertidor Cc-Cc Resonante Llc. 2019.spa
dc.relation.referencesCoolMOS  benefits in both hard and soft switching SMPS topologies Hard and soft switching topologies , applications and suitable CoolMOS families.spa
dc.relation.referencesArnau Ibarz Claret. Tesis de Magister Optimizadores de potencia para sistemas fotovoltaicos basados en convertidores de potencia parcial. 2019.spa
dc.relation.referencesRichard Brown, Eric Masanet, Bruce Nordman, Arman Shehabi, John Stanley, Dale Sartor, and Peter Chan. Report to Congress on Server and Data Center Energy Efficiency : Public Law 109-431 Environmental Energy Technologies Division Alliance to Save Energy ICF Incorporated. (August), 2008.spa
dc.relation.referencesToru Tanaka, Naoki Hanaoka, Akiko Takahashi, Koki Asakimori, Takeshi Iwato, Atsushi Sakurai, and Nobuhiko Yamashita. Concept of new power supply system topology using 380 v and 48 v DC bus for future datacenters and telecommunication buildings. INTELEC, International Telecommunications Energy Conference (Procee-dings), 2016-Septe:3-4, 2016.spa
dc.relation.referencesShuai Jiang, Stefano Saggini, Chenhao Nan, Xin Li, Chee Chung, and Mobashar Yazdani. Switched Tank Converters. IEEE Transactions on Power Electronics, 34(6):5048–5062, 2019.spa
dc.relation.referencesLuhfw W R Rzq, Uxqhool D Dulq, Jdlq Prgholqj, D Q G Hiilflhqf, and Zloo Eh. Direct 48V to 1V Step-Down DC-DC Converterspa
dc.relation.referencesStefano Saggini, Shuai Jiang, Mario Ursino, and Chenhao Nan. A 99 % efficient dual-phase resonant switched-Capacitor-buck converter for 48 v data center bus con-versions. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:482-487, 2019spa
dc.relation.referencesZichao Ye, Yutian Lei, and Robert C.N. Pilawa-Podgurski. The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology with High Power Density and Efficiency. IEEE Transactions on Power Electronics, 35(5):4946-4958, 2020.spa
dc.relation.referencesArnab Acharya, V. Inder Kumar, and Santanu Kapat. Dynamic bus voltage configu-ration in a two-stage multi-phase buck converter to mitigate transients. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:496-501, 2019spa
dc.relation.referencesZichao Ye, Yutia Lei, and Robert C.N. Pilawa-Podgurski. A resonant switched capa-citor based 4-to-1 bus converter achieving 2180 W/in3 power density and 98.9 % peak efficiency. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2018-March:121-126, 2018spa
dc.relation.referencesGan Fets and Michael A De Rooij. High-Power Density, for servers Using 900-w llc converters gan FEts. pages 40-47, 2019spa
dc.relation.referencesArman Shehabi, Sarah Josephine Smith, Dale A Sartor, Richard E Brown, Magnus Herrlin, Jonathan G Koomey, Eric R Masanet, Nathaniel Horner, Inˆes Lima Azevedo, and William Lintner. United States Data Center Energy Usage Report - Energy Technologies Area. (June):65, 2016spa
dc.relation.referencesA Case Energy-efficient Datacenters. Energy-Efficient Datacenters. 31(10):1465-1484, 2012spa
dc.relation.referencesAnders Andrae and Tomas Edler. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges, 6(1):117–157, 2015spa
dc.relation.referencesEric R. Masanet, Richard E. Brown, Arman Shehabi, Jonathan G. Koomey, and Bruce Nordman. Estimating the energy use and efficiency potential of U.S. data centers. Proceedings of the IEEE, 99(8):1440-1453, 2011spa
dc.relation.referencesReto Christen, Jasmin Smajic, Arvind Sridhar, and Thomas Brunschwiler. Design and optimization of a wide dynamic range programmable power supply for data center applications. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:2210–2217, 2019.spa
dc.relation.referencesArthur G. Birchenough. A High Efficiency DC Bus Regulator / RPC for Spacecraft Applications. pages 606–613, 2004spa
dc.relation.referencesChiayi City. SOLAR POWER CONVERTER WITH MULTIPLE OUTPUTS AND CONVERSION CIRCUIT THEREOF. 1(19), 2011spa
dc.relation.referencesCarlos Olalla, Daniel Clement, Miguel Rodriguez, and Dragan Maksimovic. Ar-chitectures and control of submodule integrated dc-dc converters for photovoltaic applications. IEEE Transactions on Power Electronics, 28(6):2980-2997, 2013spa
dc.relation.referencesJonatan Rafael Rakoski Zientarski, Jose Renes Pinheiro, Mario Lucio Da Silva Mar-tins, and Helio Leaes Hey. Understanding the partial power processing concept: A case-study of buck-boost dc/dc series regulator. 2015 IEEE 13th Brazilian Po-wer Electronics Conference and 1st Southern Power Electronics Conference, CO-BEP/SPEC 2016, (1), 2015spa
dc.relation.referencesD E Patentes Pct, Mandatario Silva, and C I A Patentes Y Marcas. PARTIAL POWER CONVERTER (PPC) IN AN ELECTRICAL ENERGY SYSTEM. (12), 2018spa
dc.relation.referencesFei Xue, Ruiyang Yu, and Alex Huang. Fractional converter for high efficiency high power battery energy storage system. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January:5144-5150, 2017.spa
dc.relation.referencesJon Anzola, Iosu Aizpuru, Asier Arruti Romero, Argine Alacano Loiti, Ramon Lopez-Erauskin, Jesus Sergio Artal-Sevil, and Carlos Bernal. Review of Architectures Based on Partial Power Processing for DC-DC Applications. IEEE Access, 8:103405-103418, 2020.spa
dc.relation.referencesVishnu Mahadeva Iyer, Srinivas Gulur, Subhashish Bhattacharya, and Ramanujam Ramabhadran. A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid. 2019 IEEE Energy Conversion Congress and Ex-position, ECCE 2019, pages 5783–5790, 2019spa
dc.relation.referencesLiqun Chen, Hongfei Wu, Peng Xu, Haibing Hu, and Chengan Wan. A high step-down non-isolated bus converter with partial power conversion based on synchronous LLC resonant converter. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May):1950–1955, 2015spa
dc.relation.referencesJunjian Zhao, Kenton Yeates, and Yehui Han. Analysis of high efficiency DC/DC converter processing partial input/output power. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics, COMPEL 2013, pages 0–7, 2013spa
dc.relation.referencesJaime W. Zapata, Samir Kouro, Gonzalo Carrasco, Hugues Renaudineau, and Thierry A. Meynard. Analysis of Partial Power DC-DC Converters for Two-Stage Photovoltaic Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(1):591-603, 2019spa
dc.relation.referencesNicolas Muller, Samir Kouro, Pericle Zanchetta, and Patrick Wheeler. Bidirectional partial power converter interface for energy storage systems to provide peak shaving in grid-tied PV plants. Proceedings of the IEEE International Conference on Industrial Technology, 2018-Febru:892-897, 2018spa
dc.relation.referencesAlexander Morrison, Jaime W. Zapata, Samir Kouro, Marcelo A. Perez, Thierry A. Meynard, and Hugues Renaudineau. Partial power DC-DC converter for photovoltaic two-stage string inverters. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings, pages 6740–6745, 2016spa
dc.relation.referencesAhmad Diab Marzouk, S´ebastien Fournier-Bidoz, Jessica Yablecki, Kenneth McLean, and Olivier Trescases. Analysis of partial power processing distributed MPPT for a PV powered electric aircraft. 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, pages 3496–3502, 2014spa
dc.relation.referencesCheng Li, Yann E. Bouvier, Antonio Berrios, Pedro Alou, Jesus A. Oliver, and Jose A. Cobos. Revisiting †partial power architectures†from the †differential po-wer†perspective. 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics, COMPEL 2019, 1(1), 2019spa
dc.relation.referencesRatul Das and Hanh-phuc Le. Hybrid Converter for POL Applications in Data Centers and Telecommunication Systems. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 1997-2001, 2019spa
dc.relation.referencesMatthias Kasper, Dominik Bortis, and Johann W. Kolar. Novel high voltage con-version ratio Rainstick DC/DC converters. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, pages 789–796, 2013spa
dc.relation.referencesEnver Candan, Derek Heeger, Pradeep S. Shenoy, and Robert C.N. Pilawa-Podgurski. A series-stacked power delivery architecture with hot-swapping for high-efficiency data centers. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 31(5):571-578, 2015spa
dc.relation.referencesJos A Cobos, Helena Cristbal, Diego Serrano, Regina Ramos, Jess A Oliver, and Pedro Alou. Differential power as a metric to optimize power converters and ar-chitectures. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January(c):2168-2175, 2017spa
dc.relation.referencesAbbass Zein Eddine, Iyad Zaarour, Francois Guerin, Abbas Hijazi, and Dimitri Le-febvre. Improving Fault Isolation in DC/DC Converters Based with Bayesian Belief Networks. IFAC-PapersOnLine, 49(5):303–308, 2016spa
dc.relation.referencesAlvaro Anzueto-Ríos Valeria Álvarez-GarduËœno, Natalia Guadiana-Ramírez. Análisis comparativo de la modificación del parámetro de inercia para la mejora en el des-empeño del algoritmo PSO Comparative Analysis of the Modification of the Inertia Parameter for the Improvement of the PSO Algorithm Performance. 25:1-11, 2021spa
dc.relation.referencesMaurice Clerc. Capitulo 15. On Parallelism. 2006spa
dc.relation.referencesH B Llc. Application note HB LLC and SRK2001 , adaptive SR controller. (March 2020):1-51spa
dc.relation.referencesInfineon Technologies. Resonant LLC Converter: Operation and Design. Application Note, AN2012-09, 1.0(September):1–19, 2012spa
dc.relation.referencesXinwei Zhang, Xueye Wei, Xiaodong Wu, and Xiaolong Yu. Design of a Digitally Controlled Full-Bridge LLC Resonant Converter. 147(Ncce):978-984, 2018spa
dc.relation.referencesBill Andreycak. Zero Voltage Switching Resonant Power Conversionspa
dc.relation.referencesCarolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, Carolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, D E L Control, and H A L Ppcar. Aplicación del control H infinito al PPCar To cite this version : HAL Id : hal-00604267. 2011spa
dc.relation.referencesJ William Helton, Orlando Merino, and Society for Industrial and Applied Mathe-matics. Classical control using H [infinity] methods : an introduction to design. pages xii, 171 p., 1998spa
dc.relation.referencesLeidy Tatiana and Poveda Galvis. DiseËœno e implementaci´on de un Control Óptimo LQR con la tarjeta Rasberry Pi. page 104, 2016spa
dc.relation.referencesRut M. Ag¨uero, Guillermo Pic´o, Edgardo Guibert, and Juan L. Corchs. Interaction of the organic anion 1-aniline 8-naphthalene sulfonate (ANS) with isolated rat he-patocytes. Comparative Biochemistry and Physiology – Part B: Biochemistry and, 86(1):7–10, 1987spa
dc.relation.referencesJosep M. Guerrero, Juan C. Vasquez, and Jose Matas. Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. New Zealand Journal of Educational Studies, 58(1):35–51, 2016.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordData Centersspa
dc.subject.keywordPPCspa
dc.subject.keywordDCxspa
dc.subject.keywordLMI Controlspa
dc.subject.keywordFrequency Controlspa
dc.subject.keywordPSO Controlspa
dc.subject.keywordOptimizationspa
dc.subject.keywordEfficiencyspa
dc.subject.lembElectrónica de Potenciaspa
dc.subject.lembIngeniería electrónicaspa
dc.subject.lembCircuitos electrónicosspa
dc.subject.proposalData Centersspa
dc.subject.proposalPPCspa
dc.subject.proposalDCxspa
dc.subject.proposalControl LMIspa
dc.subject.proposalControl frecuenciaspa
dc.subject.proposalControl PSOspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalEficienciaspa
dc.titleAnálisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centersspa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2023brayanroncancio.pdf
Tamaño:
12.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado
Thumbnail USTA
Nombre:
Carta Aprobacion Facultad.pdf
Tamaño:
322.2 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta Aprobación Facultad
Thumbnail USTA
Nombre:
Carta Derechos de Autor.pdf
Tamaño:
924.25 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta Derechos de Autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: