Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman Scattering Spectroscopy

dc.contributor.authorCastillo, John J.spa
dc.contributor.authorRindzevicius, Tomasspa
dc.contributor.authorRozo, Ciro E.spa
dc.contributor.authorBoisen, Anjaspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-12-17T15:15:37Zspa
dc.date.available2019-12-17T15:15:37Zspa
dc.date.issued2015-01-01spa
dc.description.abstractThis paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated that the interac‐ tion of folic acid with the Au NP occurred primarily through the nitrogen atoms, from their pteridine ring. Finally, the obtained adsorption isotherm for folic acid was deduced from the analysis of the SERS spectra and it followed a negative cooperative binding model.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.5772/61606spa
dc.identifier.urihttp://hdl.handle.net/11634/20368
dc.relation.referencesCastillo J J, Svendsen W E, Rozlosnik N, Escobar P, Martínez F, Castillo-León J (2012) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138:1026– 1031.spa
dc.relation.referencesDe Bruyn E, Gulbis B, Cotton F (2014) Serum and red blood cell folate testing for folate deficiency: New features? Eur. J. Haematol. 92:354–359.spa
dc.relation.referencesOzaki Y, King R W, Carey P R (1981) Methotrexate and folate binding to dihydrofolate reductase. Separate characterization of the pteridine and paminobenzoyl binding sites by resonance Raman spectroscopy. Biochemistry 20:3219–3225.spa
dc.relation.referencesLiu L, Zhu X, Zhang D, Huang J, Li G (2007) An electrochemical method to detect folate receptor positive tumor cells. Electrochem. commun. 9:2547– 2550.spa
dc.relation.referencesIzquierdo-Lorenzo I, Sanchez-Cortes S, GarciaRamos J V (2011) Trace detection of aminoglutethi‐ mide drug by surface-enhanced Raman spectroscopy: a vibrational and adsorption study on gold nanoparticles. Anal. Methods 3:1540. [6] Wu Q, Luo C, Yu H, Kong G, Hu J (2014)spa
dc.relation.referencesWu Q, Luo C, Yu H, Kong G, Hu J (2014) Surface sol–gel growth of ultrathin SiO2 films on roughened Au electrodes: Extending borrowed SERS to a SERS inactive material. Chem. Phys. Lett. 608:35–39.spa
dc.relation.referencesJarvis R M, Johnson H E, Olembe E, Panneerselvam A, Malik Ma, Afzaal M, O’Brien P, Goodacre R (2008) Towards quantitatively reproducible sub‐ strates for SERS. Analyst 133:1449–1452.spa
dc.relation.referencesSchmidt M S, Hübner J, Boisen A (2012) Large area fabrication of leaning silicon nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 24:1– 8spa
dc.relation.referencesYang J, Palla M, Bosco FG, Rindzevicius T, Alstrøm T S, Schmidt M S, Boisen A, Ju J, Lin Q (2013) Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 7:5350–5359.spa
dc.relation.referencesDong O, Lam D C C (2011) Silver nanoparticles as surface-enhanced Raman substrate for quantitative identification of label-free proteins. Mater. Chem. Phys. 126:91–96.spa
dc.relation.referencesJing C, Fang Y (2007) Experimental (SERS) and theoretical (DFT) studies on the adsorption behav‐ iors of l-cysteine on gold/silver nanoparticles. Chem. Phys. 332:27–32.spa
dc.relation.referencesMuniz-Miranda M, Gellini C, Pagliai M, Innocenti M, Salvi P R, Schettino V (2010) SERS and compu‐ tational studies on microRNA chains adsorbed on silver surfaces. J. Phys. Chem. C. 114:13730–13735.spa
dc.relation.referencesLiu R, Zhang D, Cai C, Xiong Y, Li S, Su Y, Si M (2013) NIR-SERS studies of DNA and DNA bases attached on polyvinyl alcohol (PVA) protected silver grass-like nanostructures. Vib. Spectrosc. 67:71–79.spa
dc.relation.referencesBoca-Farcau S, Potara M, Simon T, Juhem A, Baldeck P, Astilean S (2014) Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol. Pharm. 11:391– 399.spa
dc.relation.referencesHu C, Liu Y, Qin J, Nie G, Lei B, Xiao Y, Zheng M, Rong J (2013) Fabrication of reduced graphene oxide and silver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl. Mater. Interfaces 5:4760–4768.spa
dc.relation.referencesKokaislová A, Helešicová T, Ončák M, Matějka P (2014) Spectroscopic studies of folic acid adsorbed on various metal substrates: does the type of substrate play an essential role in temperature dependence of spectral features? J. Raman. Spec‐ trosc. 45:750–757.spa
dc.relation.referencesCastillo J, Bertel L, Páez-Mozo E, Martínez F (2013) Photochemical Synthesis of the Bioconjugate Folic Acid-Gold Nanoparticles. Nanomater. Nanotech‐ nol. 3:1.spa
dc.relation.referencesScott A P, Radom L (1996) Harmonic Vibrational Frequencies:  An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interac‐ tion, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 100(d):16502–16513.spa
dc.relation.referencesZhang L, Fang Y, Zhang P (2008) Experimental and DFT theoretical studies of SERS effect on gold nanowires array. Chemical Physics Letters 102–105.spa
dc.relation.referencesSakata K, Tada K, Yamada S, Kitagawa Y, Kawaka‐ mi T, Yamanaka S, Okumura M (2013) DFT calcu‐ lations for aerobic oxidation of alcohols over neutral Au6 cluster. Mol. Phys. 112:385–392.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordGold Nanopillarsspa
dc.subject.keywordSERSspa
dc.subject.keywordFolic Acidspa
dc.titleAdsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman Scattering Spectroscopyspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman Scattering Spectroscopy.pdf
Tamaño:
763.01 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: