Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman Scattering Spectroscopy
dc.contributor.author | Castillo, John J. | spa |
dc.contributor.author | Rindzevicius, Tomas | spa |
dc.contributor.author | Rozo, Ciro E. | spa |
dc.contributor.author | Boisen, Anja | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2019-12-17T15:15:37Z | spa |
dc.date.available | 2019-12-17T15:15:37Z | spa |
dc.date.issued | 2015-01-01 | spa |
dc.description.abstract | This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated that the interac‐ tion of folic acid with the Au NP occurred primarily through the nitrogen atoms, from their pteridine ring. Finally, the obtained adsorption isotherm for folic acid was deduced from the analysis of the SERS spectra and it followed a negative cooperative binding model. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.5772/61606 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/20368 | |
dc.relation.references | Castillo J J, Svendsen W E, Rozlosnik N, Escobar P, Martínez F, Castillo-León J (2012) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138:1026– 1031. | spa |
dc.relation.references | De Bruyn E, Gulbis B, Cotton F (2014) Serum and red blood cell folate testing for folate deficiency: New features? Eur. J. Haematol. 92:354–359. | spa |
dc.relation.references | Ozaki Y, King R W, Carey P R (1981) Methotrexate and folate binding to dihydrofolate reductase. Separate characterization of the pteridine and paminobenzoyl binding sites by resonance Raman spectroscopy. Biochemistry 20:3219–3225. | spa |
dc.relation.references | Liu L, Zhu X, Zhang D, Huang J, Li G (2007) An electrochemical method to detect folate receptor positive tumor cells. Electrochem. commun. 9:2547– 2550. | spa |
dc.relation.references | Izquierdo-Lorenzo I, Sanchez-Cortes S, GarciaRamos J V (2011) Trace detection of aminoglutethi‐ mide drug by surface-enhanced Raman spectroscopy: a vibrational and adsorption study on gold nanoparticles. Anal. Methods 3:1540. [6] Wu Q, Luo C, Yu H, Kong G, Hu J (2014) | spa |
dc.relation.references | Wu Q, Luo C, Yu H, Kong G, Hu J (2014) Surface sol–gel growth of ultrathin SiO2 films on roughened Au electrodes: Extending borrowed SERS to a SERS inactive material. Chem. Phys. Lett. 608:35–39. | spa |
dc.relation.references | Jarvis R M, Johnson H E, Olembe E, Panneerselvam A, Malik Ma, Afzaal M, O’Brien P, Goodacre R (2008) Towards quantitatively reproducible sub‐ strates for SERS. Analyst 133:1449–1452. | spa |
dc.relation.references | Schmidt M S, Hübner J, Boisen A (2012) Large area fabrication of leaning silicon nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 24:1– 8 | spa |
dc.relation.references | Yang J, Palla M, Bosco FG, Rindzevicius T, Alstrøm T S, Schmidt M S, Boisen A, Ju J, Lin Q (2013) Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 7:5350–5359. | spa |
dc.relation.references | Dong O, Lam D C C (2011) Silver nanoparticles as surface-enhanced Raman substrate for quantitative identification of label-free proteins. Mater. Chem. Phys. 126:91–96. | spa |
dc.relation.references | Jing C, Fang Y (2007) Experimental (SERS) and theoretical (DFT) studies on the adsorption behav‐ iors of l-cysteine on gold/silver nanoparticles. Chem. Phys. 332:27–32. | spa |
dc.relation.references | Muniz-Miranda M, Gellini C, Pagliai M, Innocenti M, Salvi P R, Schettino V (2010) SERS and compu‐ tational studies on microRNA chains adsorbed on silver surfaces. J. Phys. Chem. C. 114:13730–13735. | spa |
dc.relation.references | Liu R, Zhang D, Cai C, Xiong Y, Li S, Su Y, Si M (2013) NIR-SERS studies of DNA and DNA bases attached on polyvinyl alcohol (PVA) protected silver grass-like nanostructures. Vib. Spectrosc. 67:71–79. | spa |
dc.relation.references | Boca-Farcau S, Potara M, Simon T, Juhem A, Baldeck P, Astilean S (2014) Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol. Pharm. 11:391– 399. | spa |
dc.relation.references | Hu C, Liu Y, Qin J, Nie G, Lei B, Xiao Y, Zheng M, Rong J (2013) Fabrication of reduced graphene oxide and silver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl. Mater. Interfaces 5:4760–4768. | spa |
dc.relation.references | Kokaislová A, Helešicová T, Ončák M, Matějka P (2014) Spectroscopic studies of folic acid adsorbed on various metal substrates: does the type of substrate play an essential role in temperature dependence of spectral features? J. Raman. Spec‐ trosc. 45:750–757. | spa |
dc.relation.references | Castillo J, Bertel L, Páez-Mozo E, Martínez F (2013) Photochemical Synthesis of the Bioconjugate Folic Acid-Gold Nanoparticles. Nanomater. Nanotech‐ nol. 3:1. | spa |
dc.relation.references | Scott A P, Radom L (1996) Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interac‐ tion, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 100(d):16502–16513. | spa |
dc.relation.references | Zhang L, Fang Y, Zhang P (2008) Experimental and DFT theoretical studies of SERS effect on gold nanowires array. Chemical Physics Letters 102–105. | spa |
dc.relation.references | Sakata K, Tada K, Yamada S, Kitagawa Y, Kawaka‐ mi T, Yamanaka S, Okumura M (2013) DFT calcu‐ lations for aerobic oxidation of alcohols over neutral Au6 cluster. Mol. Phys. 112:385–392. | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Gold Nanopillars | spa |
dc.subject.keyword | SERS | spa |
dc.subject.keyword | Folic Acid | spa |
dc.title | Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman Scattering Spectroscopy | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman Scattering Spectroscopy.pdf
- Tamaño:
- 763.01 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo SCOPUS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: