Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering

dc.contributor.authorVelasco, Marco A.spa
dc.contributor.authorNarváez-Tovar, Carlos A.spa
dc.contributor.authorGarzón-Alvarado, Diego A.spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-12-17T15:39:27Zspa
dc.date.available2019-12-17T15:39:27Zspa
dc.date.issued2015spa
dc.description.abstractA review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1155/2015/729076spa
dc.identifier.urihttp://hdl.handle.net/11634/20387
dc.relation.referencesJ. E. Aubin and J. M. Heersche, “Bone cell biology osteoblasts, osteocytes, and osteoclasts,” in Pediatric Bone, Elsevier, 2002.spa
dc.relation.referencesJ. B. Lian and G. S. Stein, “The cells of bone,” Proteins, 2006.spa
dc.relation.referencesS. Cowin, Bone Mechanics Handbook, CRC press LLC, New York, NY, USA, 2001.spa
dc.relation.referencesO. Fricke, Z. Sumnik, B. Tutlewski, A. Stabrey, T. Remer, and E. Schoenau, “Local body composition is associated with gender differences of bone development at the forearm in puberty,” Hormone Research, vol. 70, no. 2, pp. 105–111, 2008.spa
dc.relation.referencesS. Weiner and H. D. Wagner, “The material bone: structuremechanical function relations,” Annual Review of Materials Science, vol. 28, no. 1, pp. 271–298, 1998.spa
dc.relation.referencesL. C. Chow, “Solubility of calcium phosphates,” Monographs in Oral Science, vol. 18, pp. 94–111, 2001.spa
dc.relation.referencesM. Wendel, Y. Sommarin, and D. Heineg˚ard, “Bone matrix proteins: isolation and characterization of a novel cell- binding keratan sulfate proteoglycan (osteoadherin) frombovine bone,” Journal of Cell Biology, vol. 141, no. 3, pp. 839–847, 1998.spa
dc.relation.referencesC. M. Gundberg, “Matrix proteins,” Osteoporosis International, vol. 14, supplement 5, pp. S37–S42, 2003.spa
dc.relation.referencesP. G. Robey, N. S. Fedarko, T. E. Hefferan et al., “Structure and molecular regulation of bone matrix proteins,” Journal of Bone andMineral Research, vol. 8, supplement 2, pp. S483–S487, 1993.spa
dc.relation.referencesS. J. Morrison and D. T. Scadden, “The bone marrow niche for haematopoietic stem cells,” Nature, vol. 505, no. 7483, pp. 327– 334, 2014.spa
dc.relation.referencesJ. F. Raposo, L. G. Sobrinho, and H. G. Ferreira, “A minimal mathematical model of calcium homeostasis,” Journal of Clinical Endocrinology andMetabolism, vol. 87, no. 9, pp. 4330–4340, 2002.spa
dc.relation.referencesF. Barrere, T. Mahmood, K. Degroot, and C. Vanblitterswijk, “Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions,” Materials Science and Engineering R: Reports, vol. 59, no. 1–6, pp. 38–71, 2008.spa
dc.relation.referencesM. Pawlikowski, M. Klasztorny, and K. Skalski, “Studies on constitutive equation that models bone tissue,” Acta of Bioengineering and Biomechanics/Wrocław University of Technology, vol. 10, no. 4, pp. 39–47, 2008.spa
dc.relation.referencesB.Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynj´olfsson, and M. Viceconti, “Mathematical relationships between bone density and mechanical properties: a literature review,” Clinical Biomechanics, vol. 23, no. 2, pp. 135–146, 2008.spa
dc.relation.referencesU. Meyer, T. Meyer, J. Handschel, and H. P.Wiesmann, Fundamentals of Tissue Engineering and Regenerative Medicine, Springer, Berlin, Germany, 2009.spa
dc.relation.referencesM. A.Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, “Biological materials: structure and mechanical properties,” Progress in Materials Science, vol. 53, no. 1, pp. 1–206, 2008.spa
dc.relation.referencesM.Doblaré, J. M. Garc´ıa, and M. J.G´omez, “Modelling bone tissue fracture and healing: a review,” Engineering FractureMechanics, vol. 71, no. 13-14, pp. 1809–1840, 2004.spa
dc.relation.referencesK. Piper and G. Valentine, “Bone pathology,” Methods in Molecular Biology, vol. 915, pp. 51–88, 2012.spa
dc.relation.referencesN. Peel, “Bone remodelling and disorders of bone metabolism,” Surgery, vol. 27, no. 2, pp. 70–74, 2009.spa
dc.relation.referencesJ. L. Marsh, T. F. Slongo, J. Agel et al., “Fracture and dislocation classification compendium—2007: Orthopaedic Trauma Association Classification, Database and Outcomes Committee,” Journal of Orthopaedic Trauma, vol. 21, no. 10, supplement, pp. S1–S133, 2007.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordMechanobiologyspa
dc.subject.keywordBiodegradablespa
dc.subject.keywordBone Tissue Engineeringspa
dc.subject.keywordBiomaterialsspa
dc.titleDesign, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineeringspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.pdf
Tamaño:
1.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: