Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
dc.contributor.advisor | Candela Soto, Angélica María | spa |
dc.contributor.advisor | Palet Ballús, Cristina | spa |
dc.contributor.advisor | Gutiérrez Cifuentes, Jorge Andrés | spa |
dc.contributor.author | Guevara Bernal, Daniel Fernando | spa |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2020-08-04T16:14:52Z | spa |
dc.date.available | 2020-08-04T16:14:52Z | spa |
dc.date.issued | 2020-07-21 | spa |
dc.description | En la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursores el nitrato de plata (AgNO3) y borohidruro de sodio (NaBH4). Con la finalidad de evaluar la extracción de los iones metálicos se realizó una cinética de extracción e isotermas, así como también se realizó la caracterización de los materiales mediante técnicas como FT-IR, SEM y DLS. En adición, la plata tiene propiedades antimicrobianas, por ende, se realizaron pruebas de actividad bactericida y antifúngica sobre diferentes especies que suelen afectar a la sociedad. | spa |
dc.description.abstract | The investigation is about, the use of modified coffee husk in the extraction of metal ions of Pb(II), Cd(II), Cu(II) and Cr(III) in aqueous solution. The modification of husk and coffee lignin was carried out by the impregnation method, using silver nitrate (AgNO3), and sodium borohydride (NaBH4) as precursors. In order to evaluate the extraction of metal ions, extraction kinetics and isotherms were performed, as well as the characterization of materials using techniques such as FT-IR, SEM and DLS. In addition, silver has antimicrobial properties, therefore, tests for bactericidal and antifungal activity were carried out on different species that usually affect society. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico Ambiental | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Guevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/28803 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Química Ambiental | spa |
dc.publisher.program | Pregrado Química Ambiental | spa |
dc.relation.references | Ahmad, N., Plorde, J., & Drew, L. (2011). Sherris. Microbiología Médica (5th ed.). McGraw-Hill | spa |
dc.relation.references | Al-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274. https://doi.org/https://doi.org/10.1016/j.ejar.2017.10.003 | spa |
dc.relation.references | Alatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6), 1095. https://doi.org/10.3390/en12061095 | spa |
dc.relation.references | Alzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://doi.org/10.3390/polym11040670 | spa |
dc.relation.references | Andrada, A. M. (2012). Nanotecnología: descubriendo lo invisible. Editorial Maipue. | spa |
dc.relation.references | Andrade Estévez, A. C., & Valdiviezo Aguilar, A. B. (2012). Control microbiológico de cosméticos elaborados artesanalmente en base de productos naturales en la ciudad de Quito [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/9579/merged %2848%29.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Arenas Guzmán, R. (2008). Micología Médica Ilustrada (3rd ed.). McGraw-Hill. | spa |
dc.relation.references | Association for Professionals in Infection Control and Epidemiology. (n.d.). Staphylococcus aureus. Retrieved February 20, 2020, from https://apic.org/monthly_alerts/staphylococcus-aureus/ | spa |
dc.relation.references | Audesirk, T., Audesirk, G., Byers, B. E., Garc\’\ia, H. J. E., & Garc\’\ia, R. L. E. (2003). Biología: la vida en la tierra. Pearson Educación. https://books.google.com.co/books?id=uO48-6v7GcoC | spa |
dc.relation.references | Ávalos, A., Haza, A., & Morales, P. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense de Ciencias Veterinarias, 7(2), 1–23. https://doi.org/10.5209/rev_RCCV.2013.v7.n2.43408 | spa |
dc.relation.references | Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products, 139. https://doi.org/10.1016/j.indcrop.2019.111526 | spa |
dc.relation.references | Balu, A. M. (2012). Nanopartículas Soportadas Sobre Materiales Porosos Para La Síntesis De Productos De Alto Valor Añadido Tesis Doctoral [Universidad de Córdoba]. www.uco.es/publicaciones | spa |
dc.relation.references | Banu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Preethi, J., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 122821. https://doi.org/10.1016/j.biortech.2020.122821 | spa |
dc.relation.references | Bazzicalupi, C., García-España, E., & Delgado-Pinar, E. (2014). Metals in supramolecular chemistry. Inorganica Chimica Acta, 417, 3–26. https://doi.org/10.1016/J.ICA.2014.03.001 | spa |
dc.relation.references | Behrens, M. (2010). Synthesis of Solid Catalysts. Angewandte Chemie International Edition, 49(12), 2095–2095. https://doi.org/10.1002/anie.200907333 | spa |
dc.relation.references | Bilal, M., & Iqbal, H. M. N. (2019). Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 388, 1–23. https://doi.org/10.1016/J.CCR.2019.02.024 | spa |
dc.relation.references | Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin Biosynthesis. Annual Review of Plant Biology, 54(1), 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938 | spa |
dc.relation.references | Burbano Patiño, A. A. (2018). Síntesis y caracterización de nanopartículas magnéticas del tipo core-shell Fe3O4@Ag soportadas sobre lignina y cascarilla de café [Universidad Santo Tomás]. http://hdl.handle.net/11634/16926 | spa |
dc.relation.references | Cadogan, E. I., Lee, C.-H., Popuri, S. R., & Lin, H.-Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration & Biodegradation, 95, 232–240. https://doi.org/https://doi.org/10.1016/j.ibiod.2014.06.003 | spa |
dc.relation.references | Candela Soto, A. M. (2013). Desarrollo y caracterización de métdos de separación y preconcentración de Uranio (VI) a nivel de trazas para su efectiva determinación. Universitat Autònoma de Barcelona. | spa |
dc.relation.references | Cardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdf | spa |
dc.relation.references | Chatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175(1), 117–125. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.09.136 | spa |
dc.relation.references | Chemistry of Coffee: Science Behind the Black Nectar. (2019). https://goodcoffeeplace.com/coffee-chemistry/ | spa |
dc.relation.references | Chen, H., Qu, X., Liu, N., Wang, S., Chen, X., & Liu, S. (2018). Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 139, 248–258. https://doi.org/10.1016/j.cherd.2018.09.028 | spa |
dc.relation.references | Choi, J., Lee, J. Y., & Yang, J.-S. (2009). Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 161(1), 157–162. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.03.065 | spa |
dc.relation.references | Clinical and Laboratory Standards Institute. (1999). M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline This document provides procedures for determining the lethal activity of antimicrobial agents. www.clsi.org. | spa |
dc.relation.references | Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., Pezzin, A. P. T., Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., & Pezzin, A. P. T. (2018). Influência do teor de argila nas propriedades do polipropileno e a reciclagem dos nanocompósitos obtidos por injeção. Matéria (Rio de Janeiro), 22(suppl 1). https://doi.org/10.1590/s1517-707620170005.0267 | spa |
dc.relation.references | Control de Infecciones y Epidemiología. (2004, April). Pseudomonas aeruginosa. https://codeinep.org/pseudomonas-aeruginosa/ | spa |
dc.relation.references | Covarrubias, S. A., & Cabriales, J. J. P. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental, 33(0), 7–21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.esp01.01/46640 | spa |
dc.relation.references | Cruz, G., Braz, C., Ferreira, S., Moreira, A., & Crnkovic, P. (2013). PHYSICOCHEMICAL PROPERTIES OF BRAZILIAN BIOMASSES: POTENTIAL APPLICATIONS AS RENEWABLE ENERGY SOURCE. https://doi.org/10.13140/2.1.4761.2485 | spa |
dc.relation.references | Cuervo, L., Folch, J. L., & Quiroz, R. E. (2009). Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol . BioTecnologia, 13(3), 11–25. https://doi.org/10.1016/j.vetpar.2008.12.007 | spa |
dc.relation.references | Egas Vivero, P. R. (2016). Caracterización fenotípica y genotípica del bacteriófago 5Q18 activo contra Escherichia coli enteropatógena multirresistente [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12525/DISERTACIÓN FINAL_CDs_jul13.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Fackler, J. P. (2007). Catalysis by Gold By Geoffrey C. Bond (Brunel University, U.K.), Catherine Louis (Université Pierre et Marie Curie, France), and David T. Thompson (Consultant, World Gold Council, UK). From the Series: Catalytic Science Series, Volume 6. Series Edited by. Journal of the American Chemical Society, 129(13), 4107. https://doi.org/10.1021/ja069835l | spa |
dc.relation.references | Florez Rojas, J. (2015). Energías alternativas en Colombia bajo la ley 1715. Universidad Militar Nueva Granada. | spa |
dc.relation.references | Gadd, G. M. (1994). Interactions of Fungi with Toxic Metals (K. A. Powell, A. Renwick, & J. F. Peberdy (Eds.); pp. 361–374). Springer US. https://doi.org/10.1007/978-1-4899-0981-7_28 | spa |
dc.relation.references | García Cárdenas, J. N. (2012). Prevalencia de Staphylococcus aureus en manipuladores de alimentos en el área de producción (cocina caliente y fría, pastelería, carnes), de una empresa privada [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12084/TESIS NATHALI GARCIA CARDENAS.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Ge, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.01.042 | spa |
dc.relation.references | Gharehkhani, S., Zhang, Y., & Fatehi, P. (2019). Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 72, 59–89. https://doi.org/https://doi.org/10.1016/j.pecs.2019.01.002 | spa |
dc.relation.references | Gómez, S., García, S. M., de Bedout, S., & García, A. M. (2011). Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondii sensibles y resistentes al fluconazol. Infectio, 15(1), 20–24. | spa |
dc.relation.references | Guo, Y., & Zhao, W. (2019). In situ formed nanomaterials for colorimetric and fluorescent sensing. Coordination Chemistry Reviews, 387, 249–261. https://doi.org/10.1016/J.CCR.2019.02.019 | spa |
dc.relation.references | Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.06.009 | spa |
dc.relation.references | Huang, J., Fu, S., & Gan, L. (2019). Lignin Chemistry and Applications. Elsevier Science. | spa |
dc.relation.references | Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. In Resources, Conservation and Recycling (Vol. 128, pp. 110–117). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2017.10.001 | spa |
dc.relation.references | Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.198 | spa |
dc.relation.references | Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. In Waste Management (Vol. 72, pp. 240–254). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.10.042 | spa |
dc.relation.references | Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent Coffee Grounds as a Versatile Source of Green Energy. Journal of Agricultural and Food Chemistry, 56(24), 11757–11760. https://doi.org/10.1021/jf802487s | spa |
dc.relation.references | Lazo, J., Navarro, A., Sun-Kou, M., & Llanos, B. (2008). Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes del fenol. Rev Soc Quím Perú, 74(1), 3–19. | spa |
dc.relation.references | Lezcano Valverde, J. M., González González, F., & Ballester Pérez, A. (2009). Efecto del pretratamiento de biomasa procedente de un hábitat eutrofizado sobre la bioabsorción de metales pesados. Universidad Complutense de Madrid. | spa |
dc.relation.references | Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. In Renewable and Sustainable Energy Reviews (Vol. 49, pp. 871–906). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.091 | spa |
dc.relation.references | Malvern Panalytical. (n.d.). Dispersión de luz dinámica para la caracterización de tamaño. Retrieved February 23, 2020, from https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scattering | spa |
dc.relation.references | Masindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082 | spa |
dc.relation.references | Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. https://doi.org/10.1038/415514a | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (2018). Resolución 0883 del 18 de Mayo del 2018. http://www.minambiente.gov.co/images/normativa/app/resoluciones/18-res 883 de 2018.pdf | spa |
dc.relation.references | Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059 | spa |
dc.relation.references | Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Chapter 11 - Characterization of Nanomaterials: Tools and Challenges. In A. López Rubio, M. J. Fabra Rovira, M. martínez Sanz, & L. G. B. T.-N. for F. A. Gómez-Mascaraque (Eds.), Micro and Nano Technologies (pp. 313–353). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814130-4.00011-7 | spa |
dc.relation.references | Müller, M. (2016). Clinical Pharmacology: Current Topics and Case Studies. Springer International Publishing. https://books.google.com.co/books?id=ZgfNCwAAQBAJ | spa |
dc.relation.references | Muñoz-Rojas, D., Maindron, T., Esteve, A., Piallat, F., Kools, J. C. S., & Decams, J.-M. (2019). Speeding up the unique assets of atomic layer deposition. Materials Today Chemistry, 12, 96–120. https://doi.org/10.1016/J.MTCHEM.2018.11.013 | spa |
dc.relation.references | Muralikrishna, I. V., & Manickam, V. (2017). Introduction. In Environmental Management (pp. 1–4). Elsevier. https://doi.org/10.1016/b978-0-12-811989-1.00001-4 | spa |
dc.relation.references | Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. In Resources, Conservation and Recycling (Vol. 66, pp. 45–58). https://doi.org/10.1016/j.resconrec.2012.06.005 | spa |
dc.relation.references | Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374. https://doi.org/10.1016/j.carbpol.2010.07.063 | spa |
dc.relation.references | Nada, A.-A. M. A., Yousef, M. A., Shaffei, K. A., & Salah, A. M. (1998). Infrared spectroscopy of some treated lignins. Polymer Degradation and Stability, 62(1), 157–163. https://doi.org/https://doi.org/10.1016/S0141-3910(97)00273-5 | spa |
dc.relation.references | Nanotechnology Timeline. (n.d.). Retrieved March 31, 2019, from https://www.nano.gov/timeline | spa |
dc.relation.references | Noor, N. M., Othman, R., Mubarak, N. M., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168–177. https://doi.org/https://doi.org/10.1016/j.jtice.2017.05.023 | spa |
dc.relation.references | Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 35(6), 971–986. https://doi.org/https://doi.org/10.1016/j.envint.2009.02.006 | spa |
dc.relation.references | Ogar, A., Tylko, G., & Turnau, K. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of The Total Environment, 521–522, 305–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.03.101 | spa |
dc.relation.references | Panayiotou, H., & Kokot, S. (1999). Matching and discrimination of single human-scalp hair by FT-IR micro-espectroscopy and chemometrics. Analytica Chimica Acta, 392(3). | spa |
dc.relation.references | Pankey, G. A., & Sabath, L. D. (2004). Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972 | spa |
dc.relation.references | Paredes Guerrero, D. J. (2011). Estudio Del Efecto Antibacteriano De Nanoparticulas De Plata Sobre Escherichia Coli Staphylococcus Aureus [Universidad Industrial de Santander]. https://docplayer.es/27008958-Estudio-del-efecto-antibacteriano-de-nanoparticulas-de-plata-sobre-escherichia-coli-y-staphylococcus-aureus-daissy-julieth-paredes-guerrero.html | spa |
dc.relation.references | Pérez-Arantegui, J., Molera, J., Larrea, A., Pradell, T., Vendrell-Saz, M., Borgia, I., Brunetti, B. G., Cariati, F., Fermo, P., Mellini, M., Sgamellotti, A., & Viti, C. (2004). Luster Pottery from the Thirteenth Century to the Sixteenth Century: A Nanostructured Thin Metallic Film. Journal of the American Ceramic Society, 84(2), 442–446. https://doi.org/10.1111/j.1151-2916.2001.tb00674.x | spa |
dc.relation.references | Perna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., … Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 . Nature, 409(6819), 529–533. https://doi.org/10.1038/35054089 | spa |
dc.relation.references | Perú21. (2019, July 20). ¡Cuidado! Conoce la infección de hongos vaginales que puede ser mortal. https://peru21.pe/ciencia/candidiasis-infeccion-hongos-mortal-491285-noticia/ | spa |
dc.relation.references | Poole, C. P., & Owens, F. J. (2007). Introducción a la nanotecnología. Editorial Reverté. | spa |
dc.relation.references | Puerta Quintero, G. I. (2011). Composición química de una taza de café. Avances Técnicos Cenicafé, 414. | spa |
dc.relation.references | Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311–3327. https://doi.org/10.2147/IJN.S16512 | spa |
dc.relation.references | Ragauskas, A. J. (2006). The Path Forward for Biofuels and Biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736 | spa |
dc.relation.references | Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/https://doi.org/10.1016/j.biotechadv.2008.09.002 | spa |
dc.relation.references | Requejo Leal, S. (2011). Degradación química de madera y PET reciclado y su aplicación en la síntesis de resinas de poliéster. Universidad Autónoma de Nuevo León. | spa |
dc.relation.references | Rossi, G. (1990). Biohydrometallurgy. McGraw-Hill. | spa |
dc.relation.references | Sabiiti, E. (2011). Utilising agricultural waste to enhance food security and conserve the environment | Sabiiti | African Journal of Food, Agriculture, Nutrition and Development. African Journal of Food, Agriculture, Nutrition and Development JOURNAL HOME ABOUT THIS JOURNAL ADVANCED SEARCH CURRENT ISSUE ARCHIVES, 11(6). https://www.ajol.info/index.php/ajfand/article/view/72668 | spa |
dc.relation.references | Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 10, 115–121. https://doi.org/10.2147/NSA.S133415 | spa |
dc.relation.references | Sant Joan de Déu Barcelona - Hospital. (2016, March 10). Consecuencias de una infección por E. coli. https://faros.hsjdbcn.org/es/articulo/consecuencias-infeccion-coli | spa |
dc.relation.references | Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation - A critical review. Chemosphere, 158, 37–49. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.05.043 | spa |
dc.relation.references | Servicio Geológico Colombiano, Medina Hernández, P., & Mejía Silva, M. T. (n.d.). Monografía de la Plata (Ag). Retrieved March 31, 2019, from https://www.sgm.gob.mx/Web/MuseoVirtual/pdfs/Monografia PLATA.pdf | spa |
dc.relation.references | Shankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76–84. https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.05.002 | spa |
dc.relation.references | Shelley, T., & Sarret Grau, J. (2006). Nanotecnología : nuevas promesas, nuevos peligros. El Viejo Topo. | spa |
dc.relation.references | Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 2913. https://doi.org/10.1038/s41598-018-21326-9 | spa |
dc.relation.references | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure. http://www.nrel.gov/biomass/analytical_procedures.html | spa |
dc.relation.references | Sociedad Andaluza de Enfermedades Infecciosas. (n.d.). La infección por el VIH. Guía práctica (2nd ed.). Gráficas Monterreina. | spa |
dc.relation.references | Soriano, L. M., Zougagh, M., Valcárcel, M., & Ríos, Á. (2018). Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 177, 104–121. https://doi.org/10.1016/j.talanta.2017.09.012 | spa |
dc.relation.references | Struthers, K. (2018). Microbiología clínica. Editorial El Manual Moderno. http://ebookcentral.proquest.com/lib/bibliotecaustasp/detail.action?docID=5635082 | spa |
dc.relation.references | Sun, S., Yu, Q., Li, M., Zhao, H., & Wu, C. (2019). Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renewable Energy, 142, 11–19. https://doi.org/10.1016/j.renene.2019.04.097 | spa |
dc.relation.references | Takeuchi, N. (2010). Nanociencia y nanotecnología. FCE - Fondo de Cultura Económica. | spa |
dc.relation.references | Tejada-Tovar, C., Villabona-Ortíz, Á., & Garcés-Jaraba, L. (2015). Adsorción de Metales Pesados en Agua Residuales Usando Materiales de Origen Biológico. Tecno Lógicas, 18(34), 109–123. | spa |
dc.relation.references | Terra Green. (2019). Global Waste — Solvable Problem as a Renewable Energy Resource. https://medium.com/@support_61820/global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7d | spa |
dc.relation.references | The University of Texas at Austin. (n.d.). What is nanoscience? Retrieved February 9, 2020, from https://tmi.utexas.edu/resources/what-is-nanoscience/ | spa |
dc.relation.references | Torgeson, D. (2012). Fungicides. Elsevier. | spa |
dc.relation.references | Torres Acosta, L., Mendieta, I., Hernández, G., Núñez, R., & Castaño, V. (2011). Citotoxicidad y genotoxicidad de AgNPs para disminuir la adherencia de Candida Albicans en prótesis dentales. | spa |
dc.relation.references | USEPA. (2019). National Primary Drinking Water Regulations. United States Environmental Protection Agency. https://www.mallard-inc.com/wp-content/uploads/2019/05/Drinking-Water-Standards.pdf | spa |
dc.relation.references | Volesky, B. (2003). Sorption and Biosorption. | spa |
dc.relation.references | Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029. https://doi.org/10.1016/j.watres.2007.05.062 | spa |
dc.relation.references | Vullo, D. (2003). Microorganismos y metales pesados: Una interacción en beneficio del medio ambiente. Quíimica Viva, 2(3). | spa |
dc.relation.references | Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451. https://doi.org/https://doi.org/10.1016/j.biotechadv.2006.03.001 | spa |
dc.relation.references | Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002 | spa |
dc.relation.references | WHO. (n.d.). Water. Retrieved January 28, 2020, from https://www.who.int/topics/water/en/ | spa |
dc.relation.references | WHO. (2011). Guidelines for drinking-water quality. World Health Organization, 216. | spa |
dc.relation.references | WHO. (2018). Progress on Drinking Water, Sanitation and Hygiene. World Health Organization. | spa |
dc.relation.references | Xia, J., Duan, Q.-Y., Luo, Y., Xie, Z.-H., Liu, Z.-Y., & Mo, X.-G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67. https://doi.org/https://doi.org/10.1016/j.accre.2017.03.007 | spa |
dc.relation.references | Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423–431. https://doi.org/https://doi.org/10.1016/j.cej.2012.07.048 | spa |
dc.relation.references | Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. https://doi.org/10.1016/j.fuel.2006.12.013 | spa |
dc.relation.references | Yao, L., Ye, Z., Tong, M., Lai, P., & Ni, J. (2009). Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials, 165(1), 250–255. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.09.110 | spa |
dc.relation.references | Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902. https://doi.org/https://doi.org/10.1016/j.biortech.2010.01.014 | spa |
dc.relation.references | Zanella, R. (2012). Metodologías para la síntesis de nanopartículas. Mundo Nano, 5(1). | spa |
dc.relation.references | Zanella, R., Giorgio, S., Henry, C. R., & Louis, C. (2002). Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. The Journal of Physical Chemistry B, 106(31), 7634–7642. https://doi.org/10.1021/jp0144810 | spa |
dc.relation.references | Zhang, H. (2014). Biosorption of heavy metals from aqueous solutions using keratin biomaterials [Universitat Autònoma de Barcelona]. https://www.tdx.cat/handle/10803/284239 | spa |
dc.relation.references | Zhu, Z., Gao, C., Wu, Y., Sun, L., Huang, X., Ran, W., & Shen, Q. (2013). Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Bioresource Technology, 147, 378–386. https://doi.org/https://doi.org/10.1016/j.biortech.2013.08.049 | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Bioadsorption | spa |
dc.subject.keyword | Coffee shell | spa |
dc.subject.keyword | Lignin | spa |
dc.subject.keyword | Heavy metals | spa |
dc.subject.keyword | Silver nanoparticles | spa |
dc.subject.lemb | Adsorción | spa |
dc.subject.lemb | Bioquímica | spa |
dc.subject.lemb | Enzimas-aplicaciones industriales | spa |
dc.subject.lemb | Lignina-biodegradación | spa |
dc.subject.lemb | Café | spa |
dc.subject.proposal | Bioadsorción | spa |
dc.subject.proposal | Cascarilla de café | spa |
dc.subject.proposal | Lignina | spa |
dc.subject.proposal | Metales pesados | spa |
dc.subject.proposal | Nanopartículas de plata | spa |
dc.subject.proposal | Café | spa |
dc.title | Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Files
Original bundle
1 - 3 of 3

- Name:
- 2020GuevaraDaniel.pdf
- Size:
- 3.2 MB
- Format:
- Adobe Portable Document Format
- Description:
- Trabajo de grado

- Name:
- 2020GuevaraDaniel1.pdf
- Size:
- 203.82 KB
- Format:
- Adobe Portable Document Format
- Description:
- Aprobación facultad

- Name:
- 2020GuevaraDaniel2.pdf
- Size:
- 113.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acuerdo de confidencialidad
License bundle
1 - 1 of 1

- Name:
- license.txt
- Size:
- 807 B
- Format:
- Item-specific license agreed upon to submission
- Description: