Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana

dc.contributor.advisorCandela Soto, Angélica Maríaspa
dc.contributor.advisorPalet Ballús, Cristinaspa
dc.contributor.advisorGutiérrez Cifuentes, Jorge Andrésspa
dc.contributor.authorGuevara Bernal, Daniel Fernandospa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2020-08-04T16:14:52Zspa
dc.date.available2020-08-04T16:14:52Zspa
dc.date.issued2020-07-21spa
dc.descriptionEn la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursores el nitrato de plata (AgNO3) y borohidruro de sodio (NaBH4). Con la finalidad de evaluar la extracción de los iones metálicos se realizó una cinética de extracción e isotermas, así como también se realizó la caracterización de los materiales mediante técnicas como FT-IR, SEM y DLS. En adición, la plata tiene propiedades antimicrobianas, por ende, se realizaron pruebas de actividad bactericida y antifúngica sobre diferentes especies que suelen afectar a la sociedad.spa
dc.description.abstractThe investigation is about, the use of modified coffee husk in the extraction of metal ions of Pb(II), Cd(II), Cu(II) and Cr(III) in aqueous solution. The modification of husk and coffee lignin was carried out by the impregnation method, using silver nitrate (AgNO3), and sodium borohydride (NaBH4) as precursors. In order to evaluate the extraction of metal ions, extraction kinetics and isotherms were performed, as well as the characterization of materials using techniques such as FT-IR, SEM and DLS. In addition, silver has antimicrobial properties, therefore, tests for bactericidal and antifungal activity were carried out on different species that usually affect society.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationGuevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/28803
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programPregrado Química Ambientalspa
dc.relation.referencesAhmad, N., Plorde, J., & Drew, L. (2011). Sherris. Microbiología Médica (5th ed.). McGraw-Hillspa
dc.relation.referencesAl-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274. https://doi.org/https://doi.org/10.1016/j.ejar.2017.10.003spa
dc.relation.referencesAlatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6), 1095. https://doi.org/10.3390/en12061095spa
dc.relation.referencesAlzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://doi.org/10.3390/polym11040670spa
dc.relation.referencesAndrada, A. M. (2012). Nanotecnología: descubriendo lo invisible. Editorial Maipue.spa
dc.relation.referencesAndrade Estévez, A. C., & Valdiviezo Aguilar, A. B. (2012). Control microbiológico de cosméticos elaborados artesanalmente en base de productos naturales en la ciudad de Quito [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/9579/merged %2848%29.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesArenas Guzmán, R. (2008). Micología Médica Ilustrada (3rd ed.). McGraw-Hill.spa
dc.relation.referencesAssociation for Professionals in Infection Control and Epidemiology. (n.d.). Staphylococcus aureus. Retrieved February 20, 2020, from https://apic.org/monthly_alerts/staphylococcus-aureus/spa
dc.relation.referencesAudesirk, T., Audesirk, G., Byers, B. E., Garc\’\ia, H. J. E., & Garc\’\ia, R. L. E. (2003). Biología: la vida en la tierra. Pearson Educación. https://books.google.com.co/books?id=uO48-6v7GcoCspa
dc.relation.referencesÁvalos, A., Haza, A., & Morales, P. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense de Ciencias Veterinarias, 7(2), 1–23. https://doi.org/10.5209/rev_RCCV.2013.v7.n2.43408spa
dc.relation.referencesBajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products, 139. https://doi.org/10.1016/j.indcrop.2019.111526spa
dc.relation.referencesBalu, A. M. (2012). Nanopartículas Soportadas Sobre Materiales Porosos Para La Síntesis De Productos De Alto Valor Añadido Tesis Doctoral [Universidad de Córdoba]. www.uco.es/publicacionesspa
dc.relation.referencesBanu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Preethi, J., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 122821. https://doi.org/10.1016/j.biortech.2020.122821spa
dc.relation.referencesBazzicalupi, C., García-España, E., & Delgado-Pinar, E. (2014). Metals in supramolecular chemistry. Inorganica Chimica Acta, 417, 3–26. https://doi.org/10.1016/J.ICA.2014.03.001spa
dc.relation.referencesBehrens, M. (2010). Synthesis of Solid Catalysts. Angewandte Chemie International Edition, 49(12), 2095–2095. https://doi.org/10.1002/anie.200907333spa
dc.relation.referencesBilal, M., & Iqbal, H. M. N. (2019). Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 388, 1–23. https://doi.org/10.1016/J.CCR.2019.02.024spa
dc.relation.referencesBoerjan, W., Ralph, J., & Baucher, M. (2003). Lignin Biosynthesis. Annual Review of Plant Biology, 54(1), 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938spa
dc.relation.referencesBurbano Patiño, A. A. (2018). Síntesis y caracterización de nanopartículas magnéticas del tipo core-shell Fe3O4@Ag soportadas sobre lignina y cascarilla de café [Universidad Santo Tomás]. http://hdl.handle.net/11634/16926spa
dc.relation.referencesCadogan, E. I., Lee, C.-H., Popuri, S. R., & Lin, H.-Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration & Biodegradation, 95, 232–240. https://doi.org/https://doi.org/10.1016/j.ibiod.2014.06.003spa
dc.relation.referencesCandela Soto, A. M. (2013). Desarrollo y caracterización de métdos de separación y preconcentración de Uranio (VI) a nivel de trazas para su efectiva determinación. Universitat Autònoma de Barcelona.spa
dc.relation.referencesCardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdfspa
dc.relation.referencesChatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175(1), 117–125. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.09.136spa
dc.relation.referencesChemistry of Coffee: Science Behind the Black Nectar. (2019). https://goodcoffeeplace.com/coffee-chemistry/spa
dc.relation.referencesChen, H., Qu, X., Liu, N., Wang, S., Chen, X., & Liu, S. (2018). Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 139, 248–258. https://doi.org/10.1016/j.cherd.2018.09.028spa
dc.relation.referencesChoi, J., Lee, J. Y., & Yang, J.-S. (2009). Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 161(1), 157–162. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.03.065spa
dc.relation.referencesClinical and Laboratory Standards Institute. (1999). M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline This document provides procedures for determining the lethal activity of antimicrobial agents. www.clsi.org.spa
dc.relation.referencesColonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., Pezzin, A. P. T., Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., & Pezzin, A. P. T. (2018). Influência do teor de argila nas propriedades do polipropileno e a reciclagem dos nanocompósitos obtidos por injeção. Matéria (Rio de Janeiro), 22(suppl 1). https://doi.org/10.1590/s1517-707620170005.0267spa
dc.relation.referencesControl de Infecciones y Epidemiología. (2004, April). Pseudomonas aeruginosa. https://codeinep.org/pseudomonas-aeruginosa/spa
dc.relation.referencesCovarrubias, S. A., & Cabriales, J. J. P. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental, 33(0), 7–21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.esp01.01/46640spa
dc.relation.referencesCruz, G., Braz, C., Ferreira, S., Moreira, A., & Crnkovic, P. (2013). PHYSICOCHEMICAL PROPERTIES OF BRAZILIAN BIOMASSES: POTENTIAL APPLICATIONS AS RENEWABLE ENERGY SOURCE. https://doi.org/10.13140/2.1.4761.2485spa
dc.relation.referencesCuervo, L., Folch, J. L., & Quiroz, R. E. (2009). Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol . BioTecnologia, 13(3), 11–25. https://doi.org/10.1016/j.vetpar.2008.12.007spa
dc.relation.referencesEgas Vivero, P. R. (2016). Caracterización fenotípica y genotípica del bacteriófago 5Q18 activo contra Escherichia coli enteropatógena multirresistente [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12525/DISERTACIÓN FINAL_CDs_jul13.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesFackler, J. P. (2007). Catalysis by Gold By Geoffrey C. Bond (Brunel University, U.K.), Catherine Louis (Université Pierre et Marie Curie, France), and David T. Thompson (Consultant, World Gold Council, UK). From the Series:  Catalytic Science Series, Volume 6. Series Edited by. Journal of the American Chemical Society, 129(13), 4107. https://doi.org/10.1021/ja069835lspa
dc.relation.referencesFlorez Rojas, J. (2015). Energías alternativas en Colombia bajo la ley 1715. Universidad Militar Nueva Granada.spa
dc.relation.referencesGadd, G. M. (1994). Interactions of Fungi with Toxic Metals (K. A. Powell, A. Renwick, & J. F. Peberdy (Eds.); pp. 361–374). Springer US. https://doi.org/10.1007/978-1-4899-0981-7_28spa
dc.relation.referencesGarcía Cárdenas, J. N. (2012). Prevalencia de Staphylococcus aureus en manipuladores de alimentos en el área de producción (cocina caliente y fría, pastelería, carnes), de una empresa privada [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12084/TESIS NATHALI GARCIA CARDENAS.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesGe, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.01.042spa
dc.relation.referencesGharehkhani, S., Zhang, Y., & Fatehi, P. (2019). Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 72, 59–89. https://doi.org/https://doi.org/10.1016/j.pecs.2019.01.002spa
dc.relation.referencesGómez, S., García, S. M., de Bedout, S., & García, A. M. (2011). Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondii sensibles y resistentes al fluconazol. Infectio, 15(1), 20–24.spa
dc.relation.referencesGuo, Y., & Zhao, W. (2019). In situ formed nanomaterials for colorimetric and fluorescent sensing. Coordination Chemistry Reviews, 387, 249–261. https://doi.org/10.1016/J.CCR.2019.02.019spa
dc.relation.referencesHashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.06.009spa
dc.relation.referencesHuang, J., Fu, S., & Gan, L. (2019). Lignin Chemistry and Applications. Elsevier Science.spa
dc.relation.referencesJanissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. In Resources, Conservation and Recycling (Vol. 128, pp. 110–117). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2017.10.001spa
dc.relation.referencesJoseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.198spa
dc.relation.referencesKarmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. In Waste Management (Vol. 72, pp. 240–254). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.10.042spa
dc.relation.referencesKondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent Coffee Grounds as a Versatile Source of Green Energy. Journal of Agricultural and Food Chemistry, 56(24), 11757–11760. https://doi.org/10.1021/jf802487sspa
dc.relation.referencesLazo, J., Navarro, A., Sun-Kou, M., & Llanos, B. (2008). Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes del fenol. Rev Soc Quím Perú, 74(1), 3–19.spa
dc.relation.referencesLezcano Valverde, J. M., González González, F., & Ballester Pérez, A. (2009). Efecto del pretratamiento de biomasa procedente de un hábitat eutrofizado sobre la bioabsorción de metales pesados. Universidad Complutense de Madrid.spa
dc.relation.referencesLupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. In Renewable and Sustainable Energy Reviews (Vol. 49, pp. 871–906). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.091spa
dc.relation.referencesMalvern Panalytical. (n.d.). Dispersión de luz dinámica para la caracterización de tamaño. Retrieved February 23, 2020, from https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scatteringspa
dc.relation.referencesMasindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082spa
dc.relation.referencesMilly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. https://doi.org/10.1038/415514aspa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2018). Resolución 0883 del 18 de Mayo del 2018. http://www.minambiente.gov.co/images/normativa/app/resoluciones/18-res 883 de 2018.pdfspa
dc.relation.referencesMorones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059spa
dc.relation.referencesMudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Chapter 11 - Characterization of Nanomaterials: Tools and Challenges. In A. López Rubio, M. J. Fabra Rovira, M. martínez Sanz, & L. G. B. T.-N. for F. A. Gómez-Mascaraque (Eds.), Micro and Nano Technologies (pp. 313–353). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814130-4.00011-7spa
dc.relation.referencesMüller, M. (2016). Clinical Pharmacology: Current Topics and Case Studies. Springer International Publishing. https://books.google.com.co/books?id=ZgfNCwAAQBAJspa
dc.relation.referencesMuñoz-Rojas, D., Maindron, T., Esteve, A., Piallat, F., Kools, J. C. S., & Decams, J.-M. (2019). Speeding up the unique assets of atomic layer deposition. Materials Today Chemistry, 12, 96–120. https://doi.org/10.1016/J.MTCHEM.2018.11.013spa
dc.relation.referencesMuralikrishna, I. V., & Manickam, V. (2017). Introduction. In Environmental Management (pp. 1–4). Elsevier. https://doi.org/10.1016/b978-0-12-811989-1.00001-4spa
dc.relation.referencesMurthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. In Resources, Conservation and Recycling (Vol. 66, pp. 45–58). https://doi.org/10.1016/j.resconrec.2012.06.005spa
dc.relation.referencesMussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374. https://doi.org/10.1016/j.carbpol.2010.07.063spa
dc.relation.referencesNada, A.-A. M. A., Yousef, M. A., Shaffei, K. A., & Salah, A. M. (1998). Infrared spectroscopy of some treated lignins. Polymer Degradation and Stability, 62(1), 157–163. https://doi.org/https://doi.org/10.1016/S0141-3910(97)00273-5spa
dc.relation.referencesNanotechnology Timeline. (n.d.). Retrieved March 31, 2019, from https://www.nano.gov/timelinespa
dc.relation.referencesNoor, N. M., Othman, R., Mubarak, N. M., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168–177. https://doi.org/https://doi.org/10.1016/j.jtice.2017.05.023spa
dc.relation.referencesNoyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 35(6), 971–986. https://doi.org/https://doi.org/10.1016/j.envint.2009.02.006spa
dc.relation.referencesOgar, A., Tylko, G., & Turnau, K. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of The Total Environment, 521–522, 305–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.03.101spa
dc.relation.referencesPanayiotou, H., & Kokot, S. (1999). Matching and discrimination of single human-scalp hair by FT-IR micro-espectroscopy and chemometrics. Analytica Chimica Acta, 392(3).spa
dc.relation.referencesPankey, G. A., & Sabath, L. D. (2004). Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972spa
dc.relation.referencesParedes Guerrero, D. J. (2011). Estudio Del Efecto Antibacteriano De Nanoparticulas De Plata Sobre Escherichia Coli Staphylococcus Aureus [Universidad Industrial de Santander]. https://docplayer.es/27008958-Estudio-del-efecto-antibacteriano-de-nanoparticulas-de-plata-sobre-escherichia-coli-y-staphylococcus-aureus-daissy-julieth-paredes-guerrero.htmlspa
dc.relation.referencesPérez-Arantegui, J., Molera, J., Larrea, A., Pradell, T., Vendrell-Saz, M., Borgia, I., Brunetti, B. G., Cariati, F., Fermo, P., Mellini, M., Sgamellotti, A., & Viti, C. (2004). Luster Pottery from the Thirteenth Century to the Sixteenth Century: A Nanostructured Thin Metallic Film. Journal of the American Ceramic Society, 84(2), 442–446. https://doi.org/10.1111/j.1151-2916.2001.tb00674.xspa
dc.relation.referencesPerna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., … Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 . Nature, 409(6819), 529–533. https://doi.org/10.1038/35054089spa
dc.relation.referencesPerú21. (2019, July 20). ¡Cuidado! Conoce la infección de hongos vaginales que puede ser mortal. https://peru21.pe/ciencia/candidiasis-infeccion-hongos-mortal-491285-noticia/spa
dc.relation.referencesPoole, C. P., & Owens, F. J. (2007). Introducción a la nanotecnología. Editorial Reverté.spa
dc.relation.referencesPuerta Quintero, G. I. (2011). Composición química de una taza de café. Avances Técnicos Cenicafé, 414.spa
dc.relation.referencesQing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311–3327. https://doi.org/10.2147/IJN.S16512spa
dc.relation.referencesRagauskas, A. J. (2006). The Path Forward for Biofuels and Biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736spa
dc.relation.referencesRai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/https://doi.org/10.1016/j.biotechadv.2008.09.002spa
dc.relation.referencesRequejo Leal, S. (2011). Degradación química de madera y PET reciclado y su aplicación en la síntesis de resinas de poliéster. Universidad Autónoma de Nuevo León.spa
dc.relation.referencesRossi, G. (1990). Biohydrometallurgy. McGraw-Hill.spa
dc.relation.referencesSabiiti, E. (2011). Utilising agricultural waste to enhance food security and conserve the environment | Sabiiti | African Journal of Food, Agriculture, Nutrition and Development. African Journal of Food, Agriculture, Nutrition and Development JOURNAL HOME ABOUT THIS JOURNAL ADVANCED SEARCH CURRENT ISSUE ARCHIVES, 11(6). https://www.ajol.info/index.php/ajfand/article/view/72668spa
dc.relation.referencesSalomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 10, 115–121. https://doi.org/10.2147/NSA.S133415spa
dc.relation.referencesSant Joan de Déu Barcelona - Hospital. (2016, March 10). Consecuencias de una infección por E. coli. https://faros.hsjdbcn.org/es/articulo/consecuencias-infeccion-colispa
dc.relation.referencesSarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation - A critical review. Chemosphere, 158, 37–49. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.05.043spa
dc.relation.referencesServicio Geológico Colombiano, Medina Hernández, P., & Mejía Silva, M. T. (n.d.). Monografía de la Plata (Ag). Retrieved March 31, 2019, from https://www.sgm.gob.mx/Web/MuseoVirtual/pdfs/Monografia PLATA.pdfspa
dc.relation.referencesShankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76–84. https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.05.002spa
dc.relation.referencesShelley, T., & Sarret Grau, J. (2006). Nanotecnología : nuevas promesas, nuevos peligros. El Viejo Topo.spa
dc.relation.referencesSingh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 2913. https://doi.org/10.1038/s41598-018-21326-9spa
dc.relation.referencesSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure. http://www.nrel.gov/biomass/analytical_procedures.htmlspa
dc.relation.referencesSociedad Andaluza de Enfermedades Infecciosas. (n.d.). La infección por el VIH. Guía práctica (2nd ed.). Gráficas Monterreina.spa
dc.relation.referencesSoriano, L. M., Zougagh, M., Valcárcel, M., & Ríos, Á. (2018). Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 177, 104–121. https://doi.org/10.1016/j.talanta.2017.09.012spa
dc.relation.referencesStruthers, K. (2018). Microbiología clínica. Editorial El Manual Moderno. http://ebookcentral.proquest.com/lib/bibliotecaustasp/detail.action?docID=5635082spa
dc.relation.referencesSun, S., Yu, Q., Li, M., Zhao, H., & Wu, C. (2019). Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renewable Energy, 142, 11–19. https://doi.org/10.1016/j.renene.2019.04.097spa
dc.relation.referencesTakeuchi, N. (2010). Nanociencia y nanotecnología. FCE - Fondo de Cultura Económica.spa
dc.relation.referencesTejada-Tovar, C., Villabona-Ortíz, Á., & Garcés-Jaraba, L. (2015). Adsorción de Metales Pesados en Agua Residuales Usando Materiales de Origen Biológico. Tecno Lógicas, 18(34), 109–123.spa
dc.relation.referencesTerra Green. (2019). Global Waste — Solvable Problem as a Renewable Energy Resource. https://medium.com/@support_61820/global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7dspa
dc.relation.referencesThe University of Texas at Austin. (n.d.). What is nanoscience? Retrieved February 9, 2020, from https://tmi.utexas.edu/resources/what-is-nanoscience/spa
dc.relation.referencesTorgeson, D. (2012). Fungicides. Elsevier.spa
dc.relation.referencesTorres Acosta, L., Mendieta, I., Hernández, G., Núñez, R., & Castaño, V. (2011). Citotoxicidad y genotoxicidad de AgNPs para disminuir la adherencia de Candida Albicans en prótesis dentales.spa
dc.relation.referencesUSEPA. (2019). National Primary Drinking Water Regulations. United States Environmental Protection Agency. https://www.mallard-inc.com/wp-content/uploads/2019/05/Drinking-Water-Standards.pdfspa
dc.relation.referencesVolesky, B. (2003). Sorption and Biosorption.spa
dc.relation.referencesVolesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029. https://doi.org/10.1016/j.watres.2007.05.062spa
dc.relation.referencesVullo, D. (2003). Microorganismos y metales pesados: Una interacción en beneficio del medio ambiente. Quíimica Viva, 2(3).spa
dc.relation.referencesWang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451. https://doi.org/https://doi.org/10.1016/j.biotechadv.2006.03.001spa
dc.relation.referencesWang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002spa
dc.relation.referencesWHO. (n.d.). Water. Retrieved January 28, 2020, from https://www.who.int/topics/water/en/spa
dc.relation.referencesWHO. (2011). Guidelines for drinking-water quality. World Health Organization, 216.spa
dc.relation.referencesWHO. (2018). Progress on Drinking Water, Sanitation and Hygiene. World Health Organization.spa
dc.relation.referencesXia, J., Duan, Q.-Y., Luo, Y., Xie, Z.-H., Liu, Z.-Y., & Mo, X.-G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67. https://doi.org/https://doi.org/10.1016/j.accre.2017.03.007spa
dc.relation.referencesXu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423–431. https://doi.org/https://doi.org/10.1016/j.cej.2012.07.048spa
dc.relation.referencesYang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. https://doi.org/10.1016/j.fuel.2006.12.013spa
dc.relation.referencesYao, L., Ye, Z., Tong, M., Lai, P., & Ni, J. (2009). Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials, 165(1), 250–255. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.09.110spa
dc.relation.referencesYe, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902. https://doi.org/https://doi.org/10.1016/j.biortech.2010.01.014spa
dc.relation.referencesZanella, R. (2012). Metodologías para la síntesis de nanopartículas. Mundo Nano, 5(1).spa
dc.relation.referencesZanella, R., Giorgio, S., Henry, C. R., & Louis, C. (2002). Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. The Journal of Physical Chemistry B, 106(31), 7634–7642. https://doi.org/10.1021/jp0144810spa
dc.relation.referencesZhang, H. (2014). Biosorption of heavy metals from aqueous solutions using keratin biomaterials [Universitat Autònoma de Barcelona]. https://www.tdx.cat/handle/10803/284239spa
dc.relation.referencesZhu, Z., Gao, C., Wu, Y., Sun, L., Huang, X., Ran, W., & Shen, Q. (2013). Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Bioresource Technology, 147, 378–386. https://doi.org/https://doi.org/10.1016/j.biortech.2013.08.049spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordBioadsorptionspa
dc.subject.keywordCoffee shellspa
dc.subject.keywordLigninspa
dc.subject.keywordHeavy metalsspa
dc.subject.keywordSilver nanoparticlesspa
dc.subject.lembAdsorciónspa
dc.subject.lembBioquímicaspa
dc.subject.lembEnzimas-aplicaciones industrialesspa
dc.subject.lembLignina-biodegradaciónspa
dc.subject.lembCaféspa
dc.subject.proposalBioadsorciónspa
dc.subject.proposalCascarilla de caféspa
dc.subject.proposalLigninaspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalNanopartículas de plataspa
dc.subject.proposalCaféspa
dc.titleImplementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobianaspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Files

Original bundle

Now showing 1 - 3 of 3
Thumbnail USTA
Name:
2020GuevaraDaniel.pdf
Size:
3.2 MB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado
Thumbnail USTA
Name:
2020GuevaraDaniel1.pdf
Size:
203.82 KB
Format:
Adobe Portable Document Format
Description:
Aprobación facultad
Thumbnail USTA
Name:
2020GuevaraDaniel2.pdf
Size:
113.93 KB
Format:
Adobe Portable Document Format
Description:
Acuerdo de confidencialidad

License bundle

Now showing 1 - 1 of 1
Thumbnail USTA
Name:
license.txt
Size:
807 B
Format:
Item-specific license agreed upon to submission
Description: