Diseño de la planta motriz eléctrica para la avioneta Diamond DA50-RG
dc.contributor.advisor | Zapata Saad, Andrés José | |
dc.contributor.author | Vargas Velasco, Diego Fernando | |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=U3ngiMwAAAAJ | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-7270-3034 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2022-02-05T14:55:10Z | |
dc.date.available | 2022-02-05T14:55:10Z | |
dc.date.issued | 2022-01-31 | |
dc.description | En la actualidad la aviación se ha encaminado en la búsqueda de alternativas que reduzcan el impacto ambiental provocado por la quema de combustibles fósiles. Una opción que ha tenido un interés creciente en las últimas décadas es reemplazar los motores de combustión tradicionales en motores eléctricos ya que no producen emisiones y tienen una alta eficiencia. Las primeras muestras de esto han sido en aviones ligeros o avionetas debido a la facilidad y sencillez que prestan para llevar a cabo el cambio del motor. Para ello es necesario seguir un proceso de diseño, que consiste en adecuar un motor eléctrico junto con la hélice a su nueva tarea. Del mismo modo, dichas modificaciones supondrán pruebas de vuelo para comprobar si el rendimiento de la aeronave se ha visto afectado negativamente. El proceso de diseño de la planta motriz eléctrica para la avioneta Diamond DA50-RG inicio con la selección del motor por medio de una matriz de decisión teniendo en cuenta las especificaciones del motor a combustión de la aeronave. Luego de ello, se selecciono la hélice con la teoría del elemento de pala, en la que se probaron diferentes hélices hasta encontrar la mas adecuada para el caso establecido. Finalmente, se realizó un análisis para examinar el funcionamiento de la planta en diferentes condiciones. Los resultados mostraron que la velocidad máxima de la aeronave disminuyo de 93 m/s a 88 m/s. Se obtuvo una reducción de 154 kg de peso gracias al cambio del motor. La nueva planta motriz permite generar una cantidad de empuje equivalente a ¼ o más del peso máximo de despegue de la aeronave. | spa |
dc.description.abstract | Nowadays, aviation has been directed to the search for alternatives that reduce the environmental impact caused by the burning of fossil fuels. One option that has been of growing interest in recent decades is to replace traditional combustion engines with electric motors since they do not produce emissions and are highly efficient. The first examples of this have been in light aircraft or small planes due to the ease and simplicity that they provide to carry out the change of the engine. For this, it is necessary to follow a design process, which consists of adapting an electric motor together with the propeller to its new work. Similarly, these modifications will involve flight tests to check if the performance of the aircraft has been negatively affected. The design process of the electric power plant for the Diamond DA50-RG light aircraft began with the selection of the engine through a decision matrix taking into account the specifications of the aircraft's combustion engine. After that, the propeller was selected with the blade element theory, in which different propellers were tested until finding the most suitable for the established case. Finally, an analysis was performed to examine the performance of the plant under different conditions. The results showed that the maximum speed of the aircraft decreased from 93 m/s to 88 m/s. A reduction of 154 kg of weight was obtained thanks to the change of the engine. The new power plant allows to generate an amount of thrust equivalent to ¼ or more of the maximum takeoff weight of the aircraft. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Mecánico | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Vargas Velasco, D. F. (2022). Diseño de la planta motriz eléctrica para la avioneta Diamond DA50-RG. Bogotá D.C. [Trabajo de Pregrado, Universidad Santo Tomás]. Repositorio institucional - Universidad Santo Tomás | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/43046 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Mecánica | spa |
dc.publisher.program | Pregrado Ingeniería Mecánica | spa |
dc.relation.references | Acebal, C. (2019). Alice, el primer avión 100% eléctrico para pasajeros. https://www.expansion.com/fueradeserie/motor/2019/08/07/5d31aeac468aeba67c8b466f.html | spa |
dc.relation.references | Ardila Diaz, M. A., & Lucio Oliveros, R. A. (2011). Desarrollo de una Metodología de Diseño de una Hélice Contra Rotatoria para Motores de Categoria FAR 25. Universidad de San Buenaventura. | spa |
dc.relation.references | BBC News Mundo. (2019). Cambio climático: ¿cuál es el medio de transporte que más contamina? https://www.bbc.com/mundo/noticias-49461967 | spa |
dc.relation.references | Bird, J. J., & Langelaan, J. W. (2017). Design space exploration for hybrid solar/soaring aircraft. 17th AIAA Aviation Technology, Integration, and Operations Conference, June, 1–11. https://doi.org/10.2514/6.2017-4092 | spa |
dc.relation.references | Brandt, J. B., Deters, R. W., Ananda, G. K., Dantsker, O. D., & Selig, M. S. (s/f). UIUC Propeller Data Site. Recuperado el 15 de octubre de 2021, de https://m-selig.ae.illinois.edu/props/propDB.html | spa |
dc.relation.references | Cengel, Y. A., & Boles, M. A. (2012). Termodinámica. En Monografía De Enseñanza De La Ingeniería Térmica Y De Fluídos (7a ed). McGraw Hill. | spa |
dc.relation.references | Continental Aerospace Technologies. (2021). Continental CD-300 Jet-A Engine. http://www.continental.aero/diesel/engines/cd300.aspx | spa |
dc.relation.references | Crane, D. (1991). Dictionary of aeronautical terms (2a ed). Aviation Supplies & Academics, Inc. | spa |
dc.relation.references | Crooker, F. B., & Arendt, M. (1910). Electric motors. Their action, control and application (1a ed). D. Van Nostrand Company. | spa |
dc.relation.references | De La Sierra Rivas, F. (2014). Selección de una Hélice para una Aeronave Eléctrica [Universidad Politécnica de Madrid]. http://www.mep.go.cr/sites/default/files/barajas_fonologicas.pdf | spa |
dc.relation.references | Diamond Aircraft Industries. (s/f). DA50 RG. Recuperado el 4 de octubre de 2021, de https://www.diamondaircraft.com/en/private-pilots/aircraft/da50/overview/ | spa |
dc.relation.references | DigiSky. (s/f). SkySpark. Recuperado el 21 de septiembre de 2021, de http://www.skyspark.eu/web/ita/index.php | spa |
dc.relation.references | EG&G Technical Services, I. (2004). Fuel Cell Handbook (Seventh Edition). En U.S. Department of Energy. https://doi.org/10.1016/s0031-9422(00)82398-5 | spa |
dc.relation.references | Ehsani, M., Gao, Y., Gay, S. E., & Emadi, A. (2005). Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design (1a ed). CRC Press LLC. | spa |
dc.relation.references | ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells (ENFICA-FC). (2011). Politecnico di Torino. http://www.enfica-fc.polito.it/ | spa |
dc.relation.references | Extra 330LE Electric Aircraft - Aerospace Technology. (s/f). Recuperado el 4 de septiembre de 2021, de https://www.aerospace-technology.com/projects/extra-330le-electric-aircraft/ | spa |
dc.relation.references | Federal Aviation Administration. (1976). Airframe & Powerplant Mechanics. U. S. Department of Transportation. | spa |
dc.relation.references | Federal Aviation Administration. (2016). Pilot ’ s Handbook of Aeronautical Knowledge. En Pilot’s Handbook of Aeronautical Knowledge. U. S. Department of Transportation. | spa |
dc.relation.references | Flores, L. H., & Sánchez, J. (2010). Diseño Conceptual Y Cálculo Aerodinámico De Una Pala Para Un Helicóptero Monoplaza. Instituto Politécnico Nacional. | spa |
dc.relation.references | Guía para principiantes de propulsión. (s/f). Recuperado el 8 de septiembre de 2021, de https://www.grc.nasa.gov/WWW/k-12/airplane/bgp.html | spa |
dc.relation.references | Hepperle, M. (2018). JavaProp - Design and Analysis of Propellers. https://www.mh-aerotools.de/airfoils/javaprop.htm | spa |
dc.relation.references | Hitchens, F. E. (1942). Propeller Aerodynamics: The History, Aerodynamics & Operation of Aircraft ... - Frank Hitchens - Google Libros. Andrews UK Limited. https://books.google.com.co/books?id=PPI_CgAAQBAJ&pg=PT3&hl=es&source=gbs_toc_r&cad=4#v=onepage&q&f=false | spa |
dc.relation.references | Hughes, A. (2006). Electric Motors and Drives. En Electric Motors and Drives (3a ed). Elsevier Ltd. https://doi.org/10.1016/C2011-0-07555-5 | spa |
dc.relation.references | IATA. (2019). IATA Annual Review 2019. | spa |
dc.relation.references | Isidoro Carmona, A. (2000). Aerodinámica y actuaciones del avió (10a ed). International Thomson Publishing. | spa |
dc.relation.references | Javier. (2019). Primer vuelo del Sun Flyer 2 con motor eléctrico Siemens - BuckerBook Blog. https://www.buckerbook.es/blog/primer-vuelo-del-sun-flyer-2-con-motor-electrico-siemens/ | spa |
dc.relation.references | Johnson, W. (1994). Helicopter Theory. Dover Publications, INC. | spa |
dc.relation.references | Krishnan, R. (2010). Permanent Magnet Synchronous and Brusless DC Motor Drives (1a ed). Taylor & Francis Group. | spa |
dc.relation.references | Kumar, L., & Jain, S. (2014). Electric propulsion system for electric vehicular technology: A review. Renewable and Sustainable Energy Reviews, 29, 924–940. https://doi.org/10.1016/j.rser.2013.09.014 | spa |
dc.relation.references | Lukic, S. M., & Emadi, A. (2008). Charging ahead. IEEE Industrial Electronics Magazine, 2(4), 2–12. https://doi.org/10.1109/MIE.2008.930361 | spa |
dc.relation.references | Magnix. (s/f). Products | magniX. Recuperado el 9 de octubre de 2021, de https://www.magnix.aero/products | spa |
dc.relation.references | Maneus Salvador, E. (2018). Control of an electric Propulsion System for a Light Aircraft. Universitat Politècnica de València. | spa |
dc.relation.references | Mattingly, J. (1996). Elements of Gas Turbine Propulsion. En Tata McGraw-Hill (1a ed, Vol. 2005). McGraw Hill. | spa |
dc.relation.references | MIT Thermodynamic Notes. (s/f). Performance of Propellers. Recuperado el 16 de octubre de 2021, de https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html | spa |
dc.relation.references | Pipistrel Aircraft. (s/f). E-811 EASA TC. Recuperado el 8 de octubre de 2021, de https://www.pipistrel-aircraft.com/aircraft/electric-flight/e-811/ | spa |
dc.relation.references | Raymer, D. (1992). Aircraft Design: A Conceptual Approach (2a ed). American Institute of Aeronautics and Astronautics, Inc. https://doi.org/10.2514/4.105746 | spa |
dc.relation.references | Rosero, J. A., Ortega, J. A., Aldabas, E., & Romeral, L. (2007). Moving towards a more electric aircraft. IEEE Aerospace and Electronic Systems Magazine, 22(3), 3–9. https://doi.org/10.1109/MAES.2007.340500 | spa |
dc.relation.references | RTVE. (2013). Las emisiones de los aviones afectan más al aire. https://www.rtve.es/noticias/20191108/emisiones-aviones-afectan-mas-calidad-del-aire-clima/1989283.shtml | spa |
dc.relation.references | Savoye, F., Venet, P., Millet, M., & Groot, J. (2012). Impact of Periodic Current Pulses on Li-Ion Battery Performance. IEEE Transactions on Industrial Electronics, 59(9), 3481–3488. https://doi.org/10.1504/IJEHV.2015.074670 | spa |
dc.relation.references | Selig, M. S. (s/f). UIUC Airfoil Data Site. Recuperado el 17 de octubre de 2021, de https://m-selig.ae.illinois.edu/ads/coord_database.html | spa |
dc.relation.references | Siemens. (s/f). Electric Flight. Recuperado el 9 de octubre de 2021, de https://press.siemens.com/global/en/feature/electric-flight | spa |
dc.relation.references | Silverstein, A. (s/f). NACA Report No. 502. NASA. | spa |
dc.relation.references | Solar Flight. (s/f). Sunseeker II - Europe Tour and First Alps Crossing. Recuperado el 21 de septiembre de 2021, de https://www.solar-flight.com/sunseeker-ii/ | spa |
dc.relation.references | Solar Impulse Foundation. (s/f). Solar Impulse. Recuperado el 21 de septiembre de 2021, de https://solarimpulse.com/# | spa |
dc.relation.references | Subramonium A K, N., Shetty, P., Saravanan, G., & Vivekanandan, S. (2017). Technology and Key Strategy of IE4 Permanent Magnet Brushless DC Motor Drive for Electric Vehicle Application. Journal of Engineering Research and Application, 7(2), 25–31. https://doi.org/10.9790/9622 | spa |
dc.relation.references | Toliyat, H. A., & Kliman, G. B. (2004). Handbook of Electrical Motors. En Electronic Product Design. Taylor & Francis Group. | spa |
dc.relation.references | Tong, W. (2014). Mechanical Deasign of Electric Motors. Taylor & Francis Group. | spa |
dc.relation.references | U.S. Department of Energy: Industrial Technologies Program. (2008). Improving Motor and Drive System Performance : Industrial Technologies Program, 3, 45, 46. | spa |
dc.relation.references | Ullman, D. G. (2010). The Mechanical Design Process (4a ed). McGraw Hill. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Electric aircraft | spa |
dc.subject.keyword | Performance | spa |
dc.subject.keyword | Propeller | spa |
dc.subject.keyword | Propulsion | spa |
dc.subject.lemb | Mecánica | spa |
dc.subject.lemb | Motores | spa |
dc.subject.lemb | Tecnología | spa |
dc.subject.proposal | Avión eléctrico | spa |
dc.subject.proposal | Hélice | spa |
dc.subject.proposal | Propulsión | spa |
dc.subject.proposal | Rendimiento | spa |
dc.title | Diseño de la planta motriz eléctrica para la avioneta Diamond DA50-RG | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2022diegovargas.pdf
- Tamaño:
- 2.43 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de Grado

- Nombre:
- Carta Aprobación Facultad.pdf
- Tamaño:
- 786.31 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta aprobación facultad

- Nombre:
- Carta Derechos de Autor.pdf
- Tamaño:
- 342 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta derechos de autor
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: