Study on the inhibitory effect of furafylline and troleandomycin in the 7 - methoxyresorufin - O - demethylase and nifedipine oxidase activities in hepatic microsomes from four poultry species using high-performance liquid chromatography coupled with fluorescence and ultraviolet detection
dc.contributor.author | Murcia, Hansen | spa |
dc.contributor.author | Cruz, Andrés | spa |
dc.contributor.author | León, Jeffrey | spa |
dc.contributor.author | González-Curbelo, Miguel Ángel | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2019-05-28T18:07:03Z | spa |
dc.date.available | 2019-05-28T18:07:03Z | spa |
dc.date.issued | 2018-10-17 | spa |
dc.description.abstract | The present study reports the in vitro studies with furafylline and troleandomycin (TAO) as specific inhibitors of activities 7-methoxyresorufin-O-demethylase (MROD) and nifedipine oxidase, catalyzed by cytochrome P450 1A2 (CYP1A2) and 3A4 human enzymes, respectively, in hepatic microsomes of quail, duck,turkey and chicken. The results suggestthatin chicken and quailthe MROD activity is carried out by orthologs CYP1A4 and 1A5, meanwhile in duck and turkey by a CYP1A5 ortholog. The nifedipine oxidase activity is carried out by orthologs of the CYP3A family in the four bird species. The use of furafylline and TAO significantly decreased these activities (P < 0.05) and suggested that the biotransformation of resorufin methyl ether (RME) may be related to more than one avian ortholog. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | González-Curbelo, M. Á, León, J., Cruz, A., & Murcia, H. (2018). Study on the inhibitory effect of furafylline and troleandomycin in the 7 - methoxyresorufin - O - demethylase and nifedipine oxidase activities in hepatic microsomes from four poultry species using high-performance liquid chromatography coupled with fluorescence and ultraviolet detection. Bogotá: doi:10.1016/j.jpba.2018.10.031 | spa |
dc.identifier.doi | https://doi.org/10.1016/j.jpba.2018.10.031 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/16902 | |
dc.relation.references | U.M. Zanger, M. Schwab, Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol. Therap. 138 (2013) 103–141. | spa |
dc.relation.references | D. Spaggiari, L. Geiser, Y. Daali, S. Rudaz, A cocktail approach for assessing the in vitro activity of human cytochrome P450s: an overview of current methodologies, J. Pharm. Biomed. Anal. 101 (2014) 221–237. | spa |
dc.relation.references | M.C. Jerdi, Y. Daali, M.K. Oestreicher, S. Cherkaoui, P. Dayer, A simplified analytical method for phenotyping cocktail of mayor CYP450 biotransformation routes, J. Pharm. Biomed. Anal. 35 (2004) 1203–1212. | spa |
dc.relation.references | O. Pelkonen, J. Mäenpää, P. Taavitsainen, A. Rautio, H. Raunio, Inhibition and induction of human cytochrome P450 (CYP) enzymes, Xenobiotica 25 (1998) 1203–1253. | spa |
dc.relation.references | P.D. Josephy, Molecular Toxicology, Oxford University Press, New York, 1997. | spa |
dc.relation.references | R. Appiah-Opong, J.N.M. Commandeur, B. van Vugt-Lussenburg, N.P.E. Vermeulen, Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products, Toxicology 235 (2007) 83–91. | spa |
dc.relation.references | J.R. Halpert, F.P. Guengerich, J.R. Bend, M.A. Correia, Selective inhibitors of cytochromes P450, Toxicol. Appl. Pharmacol. 125 (1994) 163–175. | spa |
dc.relation.references | N. Chauret, A. Gauthier, J. Martin, D.A. Nicoll-Griffith, In vitro comparison of cytochrome P450-mediated metabolic activities in human, dog, cat, and horse, Drug Metab. Disps. 25 (1997) 1130–1136. | spa |
dc.relation.references | M. ˇSavlík, L. Poláˇckcová, B. Szotáková, J. Lamka, J. Velík, L. Skálová, Activities of biotransformation enzymes in pheasant (Phasianus colchicus) and their modulation by in vivo administration of mebendazole and ubendazole, Res. Vet. Sci. 83 (2007) 20–26. | spa |
dc.relation.references | D. Gilday, M. Gannon, K. Yutzey, D. Bader, A.B. Rifkind, Molecular cloning and expression of two novel avian cytochrome P450 1A enzymes induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, J. Biol. Chem. 271 (1996) 33054–33059 | spa |
dc.relation.references | A.B. Rifkind, A. Kanetoshi, J. Orlinick, J.H. Capdevila, C. Lee, Purification and biochemical characterization of two major cytochrome P-450 isoforms induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in chick embryo liver, J. Biol. Chem. 269 (1994) 3387–3396. | spa |
dc.relation.references | C.J. Omiecinski, R.P. Remmel, V.P. Hosagrahara, Concise review of the cytochrome P450s and their roles in toxicology, Toxicol. Sci. 48 (1999) 151–156. | spa |
dc.relation.references | G.J. Díaz, H.W. Murcia, S.M. Cepeda, H.J. Boermans, The role of selected cytochrome P450 enzymes on the bioactivation of aflatoxin B1 by duck liver microsomes, Avian Pathol. 39 (2010) 279–285 | spa |
dc.relation.references | G.J. Díaz, H.W. Murcia, S.M. Cepeda, Bioactivation of aflatoxin B1 by turkey liver microsomes: responsible cytochrome P450 enzymes, Br. Poult. Sci. 51 (2010) 828–837. | spa |
dc.relation.references | G.J. Díaz, H.W. Murcia, S.M. Cepeda, Cytochrome P450 enzymes involved in the metabolism of aflatoxin B1 in chickens and quail, Poult. Sci. 89 (2010) 2461–2469. | spa |
dc.relation.references | K.M. Reed, K.M. Mendoza, R.A. Coulombe Jr, Structure and genetic mapping of the cytochrome P450 gene (CYP1A5) in the turkey (Meleagris gallopavo), Cytogenet. Genome Res. 116 (2007) 104–109. | spa |
dc.relation.references | P. Klein, R. Buckner, J. Kelly, R. Coulombe, Biochemical basis for the extreme sensivity of turkeys to aflatoxin B1, Toxicol. Appl. Pharmacol. 151 (2000) 152–158. | spa |
dc.relation.references | D. Sesardic, A.R. Boobis, B.P. Murray, S. Murray, J. Segura, R. De La Torre, D.S. Davies, Furafylline is a potent and selective inhibitor of cytochrome P450IA2 in man, Br. J. Clin. Pharmac 29 (1990) 651–663. | spa |
dc.relation.references | D. Mansuy, J.L. Boucher, B. Clement, On the mechanism of nitric oxide formation upon oxidative cleavage of C=N(OH) bonds by NO-synthases and cytochromes P450, Biochim 77 (1995) 661–667. | spa |
dc.relation.references | P. Wang, Y. Zhao, Y. Zhu, J. Sun, A. Yerke, S. Sang, Z. Yu, Metabolism ofdictamnine in liver microsomes from mouse, rat, dog, monkey, and human, J.Pharm. Biomed. Anal. 119 (2016) 166–174. | spa |
dc.relation.references | J. Yang, J. An, M. Li, X. Hou, X. Qiu, Characterization of chicken cytochromeP450 1A4 and 1A5: inter-paralog comparisons of substrate preference andinhibitor selectivity, Comp. Biochem. Physiol. Part C 157 (2013) 337–343. | spa |
dc.relation.references | P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D.Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement ofprotein using bicinchoninic acid, Annal. Biochem. 150 (1985) 76–85. | spa |
dc.relation.references | W.F. Busby, J.M. Ackermann, C.L. Crespi, Effect of methanol, ethanol, dimethylsulphoxide and acetronitrile on in vitro activities of cDNA-expressed humancytochromes P-450, Drug Met. Disp. 27 (1999) 246–249. | spa |
dc.relation.references | J. Blanchard, Evaluation of the relate efficacy of various techniques fordeproteinizing plasma samples prior to high-performance liquidchromatography analysis, J. Chromatogr. 226 (1981) 455–460. | spa |
dc.relation.references | I. Leclercq, J.P. Desager, C. Vandenplas, Y. Horsmans, Fast determination oflow level cytochrome P-450 1A1 activity by high-performance liquidchromatography with fluorescence or visible absorbance detection, J.Chromatogr. B 681 (1996) 227–232. | spa |
dc.relation.references | S.C. Shim, A.N. Pae, Y.J. Lee, Mechanistic studies on the photochemicaldegradation of nifedipine, Bull. Korean Chem. Soc. 9 (1988) 271–332. | spa |
dc.relation.references | National Center for Biotechnology Information, Database resources of thenational center for biotechnology information, Nucleic Acids Res. 44 (2016)D7–D19, e. | spa |
dc.relation.references | A.G. Marangoni, Enzyme Kinetics. A Modern Approach, Wiley Interscience.John Wiley & Sons, Inc, Hoboken, New Jersey, 2003. | spa |
dc.relation.references | SAS Institute Inc, SAS/STAT®9.2 User’s Guide, SAS Institute Inc, Cary, NC, 2008. | spa |
dc.relation.references | F.P. Guengerich, Fifty years of progress in drug metabolism and toxicology:what do we still need to know about cythocrome P450 enzymes? in: FiftyYears of Cytrochrome P450 Reseach, Springer, Japan, 2014. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Furafylline | spa |
dc.subject.keyword | Troleandomycin | spa |
dc.subject.keyword | 7-methoxyresorufin-O-demethylase activity | spa |
dc.subject.keyword | Nifedipine oxidase activity | spa |
dc.subject.keyword | Avian orthologsa | spa |
dc.title | Study on the inhibitory effect of furafylline and troleandomycin in the 7 - methoxyresorufin - O - demethylase and nifedipine oxidase activities in hepatic microsomes from four poultry species using high-performance liquid chromatography coupled with fluorescence and ultraviolet detection | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Study on the inhibitory effect of furafylline and troleandomycin in the 7 - methoxyresorufin.pdf
- Tamaño:
- 1.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Articulo
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: