Clasificador de Fresa Usando Técnicas de Inteligencia Artificial

dc.contributor.advisorPardo Beainy, Camilo Ernesto
dc.contributor.advisorGutiérrez Cáceres, Edgar Andrés
dc.contributor.authorCamargo Robles, Juan José
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.coverage.campusCRAI-USTA Tunjaspa
dc.date.accessioned2024-10-01T14:22:32Z
dc.date.available2024-10-01T14:22:32Z
dc.date.issued2024
dc.descriptionEn el desarrollo de esta investigación, se implementan varios algoritmos de inteligencia artificial para la clasificación y detección del nivel de madurez de fresa. Las imágenes adquiridas por el sistema de sensado de una banda transportadora, fueron sometidas, por una parte; a algoritmos de Machine Learning y Deep Learning, orientados a la clasificación del fruto en dos categorías, definidas por sus características de madurez y deficiencias nutricionales (afectaciones visuales), y, por otra parte; a algoritmos de Deep Learning, orientados a la extracción de características para determinar su nivel de madurez. Se creó un dataset público desde cero con el objetivo de que esté disponible para cualquiera que lo necesite. Para alcanzar una clasificación satisfactoria, se entrenaron modelos utilizando la arquitectura YOLO, específicamente la versión ocho, lo que permitió realizar la clasificación del fruto con éxito. Posteriormente, se llevaron a cabo pruebas sobre las imágenes previamente clasificadas, empleando técnicas como segmentación de fondo por umbrales y segmentación cromática. Estas técnicas de ingeniería de características facilitaron la detección del nivel de madurez del fruto.spa
dc.description.abstractIn the development of this research, several artificial intelligence algorithms are implemented for the classification and detection of strawberry maturity level. The images acquired by the sensing system of a conveyor belt were subjected, on the one hand, to Machine Learning and Deep Learning algorithms, oriented to the classification of the fruit into two categories, defined by their maturity characteristics and nutritional deficiencies (visual affectations), and, on the other hand, to Deep Learning algorithms, oriented to the extraction of features to determine their maturity level. A public dataset was created from scratch with the aim of making it available to anyone who needs it. To achieve a satisfactory classification, models were trained using the YOLO architecture, specifically the YOLO architecture, specifically version eight, which allowed us to successfully classify the fruit. fruit classification successfully. Subsequently, tests were carried out on the previously classified images, using techniques such as segmentation were then tested on the previously classified images, using techniques such as thresholded background segmentation and chromatic segmentation. chromatic segmentation. These feature engineering techniques facilitated the detection of fruit maturity level. maturity level of the fruit.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCamargo, J. (2024). Clasificador de Fresa Usando Técnicas de Inteligencia Artificial. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucionalspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/58025
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesD. N. Baker, J. R. Lambert, J. M. McKinion, and S. C. A. E. Station, GOSSYM: A Simulator of Cotton Crop Growth and Yield. in Technical bulletin (South Carolina Agricultural Experiment Station). S.C. Agricultural Experiment Station, 1983. [Online]. Available: https://books.google.com.co/books?id=Y7SErgEACAAJspa
dc.relation.referencesG. Bannerjee, U. Sarkar, S. Das, and I. Ghosh, “Artificial intelligence in agriculture: A literature survey,” Int J Sci Res Comput Sci Appl Manag Stud, vol. 7, no. 3, pp. 1–6, 2018.spa
dc.relation.referencesN. C. Eli-Chukwu, “Applications of artificial intelligence in agriculture: A review.,” Engineering, Technology & Applied Science Research, vol. 9, no. 4, 2019.spa
dc.relation.referencesT. M. Mitchell, Machine Learning. in McGraw-Hill International Editions. McGraw-Hill, 1997. [Online]. Available: https://books.google.com.co/books?id=EoYBngEACAAJspa
dc.relation.referencesMinagricultura, “Cadena de la Fresa,” Dirección de Cadenas Agrícolas y Forestales, Mar. 2021.spa
dc.relation.referencesGobernación de Boyacá, “Caracterización de la Producción Agrícola del Departamento de Boyacá,” Boletín Red de Observatorios de Boyacá, vol. 1, no. 4, 2022.spa
dc.relation.referencesD. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach: International Edition. Pearson Education, 2015. https://books.google.com.co/books?id=pAWpBwAAQBAJspa
dc.relation.referencesV. Por Computador Editado, E. Alegre, G. Pajares, and A. De La Escalera, “Conceptos y Métodos en,” 2016.spa
dc.relation.referencesL. Enrique Sucar and M. Giovani Gómez, “Visión Computacional.”spa
dc.relation.referencesM. Jordan, J. Kleinberg, and B. Schölkopf, “Pattern Recognition and Machine Learning.”spa
dc.relation.referencesN. L. Montes Castrillón, “Segmentación de imágenes de frutos de café en el proceso de beneficio.” [Online]. Available: https://repositorio.unal.edu.co/handle/unal/2846spa
dc.relation.referencesI. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. in Adaptive Computation and Machine Learning series. MIT Press, 2016. https://books.google.com.co/books?id=Np9SDQAAQBAJspa
dc.relation.referencesJ. Bobadilla, Machine Learning y Deep Learning: Usando Python, Scikit y Keras. Ediciones de U, 2021. https://books.google.com.co/books?id=iAAyEAAAQBAJspa
dc.relation.referencesF. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications Co., 2017.spa
dc.relation.referencesM. Z. Rodriguez et al., “Clustering algorithms: A comparative approach,” PLoS One, vol. 14, no. 1, Jan. 2019, doi: 10.1371/journal.pone.0210236.spa
dc.relation.referencesG. Zaccone and M. R. Karim, Deep Learning with TensorFlow: Explore neural networks and build intelligent systems with Python, 2nd Edition. Packt Publishing, 2018. [Online]. Available: https://books.google.com.co/books?id=zZlUDwAAQBAJspa
dc.relation.referencesGlenn Jocher and Muhammad Rizwan Munawar, “Ultralytics YOLO Docs,” Ultralitycs Inc.spa
dc.relation.referencesN. Ismail and O. A. Malik, “Real-time visual inspection system for grading fruits using computer vision and deep learning techniques,” Information Processing in Agriculture, vol. 9, no. 1, pp. 24–37, Mar. 2022, doi: 10.1016/j.inpa.2021.01.005.spa
dc.relation.referencesH. Zhou, Z. Zhuang, Y. Liu, Y. Liu, and X. Zhang, “Defect classification of green plums based on deep learning,” Sensors (Switzerland), vol. 20, no. 23, pp. 1–15, Dec. 2020, doi: 10.3390/s20236993.spa
dc.relation.referencesD. Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial,” Killkana Técnica, vol. 1, no. 2, p. 21, Nov. 2017, doi: 10.26871/killkana_tecnica.v1i2.79.spa
dc.relation.referencesP. Constante, A. Gordon, O. Chang, E. Pruna, F. Acuna, and I. Escobar, “Artificial Vision Techniques to Optimize Strawberry’s Industrial Classification,” IEEE Latin America Transactions, vol. 14, no. 6, pp. 2576–2581, 2016, doi: 10.1109/TLA.2016.7555221.spa
dc.relation.referencesJ. Victor Aguilar-Alvarado and M. Alfredo Campoverde-Molina, “Classification of fruits based on convolutional neural networks Classificação de frutos com base em redes neurais convolucionais Ciencias de la ingeniería Artículo de investigación,” vol. 5, no. 01, pp. 3 22, 2019, doi: 10.23857/pc.v5i01.1210.spa
dc.relation.referencesE. De Postgrado, “UNIVERSIDAD PRIVADA ANTENOR ORREGO "ESPECTROSCOPIA CON INFRARROJO Y TECNICAS DE MACHINE LEARNING Y DEEP LEARNING PARA LA DETECCIÓN Y CLASIFICACIÓN DE FRUTAS PARA LA AGROINDUSTRIA. CASO: ARÁNDANOS-EMPRESA TalSA-2018 ".”spa
dc.relation.referencesA. Pajaziti, F. Basholli, and Y. Zhaveli, “Identification and classification of fruits through robotic system by using artificial intelligence,” Engineering Applications, vol. 2, no. 2, pp. 154–163, May 2023, [Online]. https://publish.mersin.edu.tr/index.php/enap/article/view/974spa
dc.relation.referencesY. Fonseca, C. Bautista, C. Pardo-Beainy, and C. Parra, “A plum selection system that uses a multi-class Convolutional Neural Network (CNN),” J Agric Food Res, vol. 14, p. 100793, 2023, doi: https://doi.org/10.1016/j.jafr.2023.100793.spa
dc.relation.referencesJ. P. Bonilla-González and F. A. Prieto-Ortiz, “Determinación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de color,” REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN, vol. 7, no. 1, p. 111, Dec. 2016, doi: 10.19053/20278306.v7.n1.2016.5603.spa
dc.relation.referencesS. Yang, W. Wang, S. Gao, and Z. Deng, “Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer,” Comput Electron Agric, vol. 215, p. 108360, 2023, doi: https://doi.org/10.1016/j.compag.2023.108360.spa
dc.relation.referencesA. Almutairi, J. Alharbi, S. Alharbi, H. F. Alhasson, S. S. Alharbi, and S. Habib, “Date Fruit Detection and Classification based on Its Variety Using Deep Learning Technology,” IEEE Access, p. 1, 2024, doi: 10.1109/ACCESS.2024.3433485.spa
dc.relation.referencesC. Dewi, O. M. Kamlasi, G. Chhabra, G. Dai, K. Kaushik, and I. U. Khan, “Automated Fruit Classification Based on Deep Learning Utilizing Yolov8,” in 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2023, pp. 801–807. doi: 10.1109/UPCON59197.2023.10434542.spa
dc.relation.referencesT. S. Gunawan, M. Kartiwi, H. Mansor, and N. M. Yusoff, “Palm Fruit Ripeness Detection and Classification Using Various YOLOv8 Models,” in 2023 IEEE 9th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), 2023, pp. 193–198. doi: 10.1109/ICSIMA59853.2023.10373435.spa
dc.relation.referencesD.-L. Nguyen, X.-T. Vo, A. Priadana, M. D. Putro, and K.-H. Jo, “Fruit Ripeness Detector for Automatic Fruit Classification Systems,” in 2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE), 2024, pp. 1–6. doi: 10.1109/ISIE54533.2024.10595723.spa
dc.relation.referencesC. Tang et al., “A fine recognition method of strawberry ripeness combining Mask R-CNN and region segmentation,” Front Plant Sci, vol. 14, 2023, doi: 10.3389/fpls.2023.1211830.spa
dc.relation.referencesC. C. Tran, D. T. Nguyen, H. D. Le, Q. B. Truong, and Q. D. Truong, “Automatic dragon fruit counting using adaptive thresholds for image segmentation and shape analysis,” in 2017 4th NAFOSTED Conference on Information and Computer Science, 2017, pp. 132 137. doi: 10.1109/NAFOSTED.2017.8108052.spa
dc.relation.referencesP. Constante, A. Gordon, O. Chang, E. Pruna, F. Acuna, and I. Escobar, “Artificial Vision Techniques to Optimize Strawberry’s Industrial Classification,” IEEE Latin America Transactions, vol. 14, no. 6, pp. 2576–2581, 2016, doi: 10.1109/TLA.2016.7555221.spa
dc.relation.referencesY.-T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,” IEEE Transactions on Consumer Electronics, vol. 43, no. 1, pp. 1–8, 1997, doi: 10.1109/30.580378.spa
dc.relation.referencesR. G. Apaza, C. E. Portugal-Zambrano, J. C. Gutiérrez-Cáceres, and C. A. Beltrán Castañón, “An approach for improve the recognition of defects in coffee beans using retinex algorithms,” in 2014 XL Latin American Computing Conference (CLEI), 2014, pp. 1–9. doi: 10.1109/CLEI.2014.6965102.spa
dc.relation.referencesL. Yang, D. Mu, Z. Xu, and K. Huang, “Apple Surface Defect Detection Based on Gray Level Co-Occurrence Matrix and Retinex Image Enhancement,” Applied Sciences (Switzerland), vol. 13, no. 22, Nov. 2023, doi: 10.3390/app132212481.spa
dc.relation.referencesD. Haba, Data Augmentation with Python: Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data. Packt Publishing, 2023. [Online]. Available: http://ieeexplore.ieee.org/document/10251193spa
dc.relation.referencesJ. T. Viñals, Python Deep Learning : introducción práctica con Keras y TensorFlow 2. Marcombo, 2020. [Online]. https://books.google.com.co/books?id=5vpmzQEACAAJspa
dc.relation.referencesX. Guo, Y. Yang, C. Wang, and J. Ma, “Image dehazing via enhancement, restoration, and fusion: A survey,” Information Fusion, vol. 86–87, pp. 146–170, 2022, doi: https://doi.org/10.1016/j.inffus.2022.07.005.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordArtificial Intelligencespa
dc.subject.keywordClassificationspa
dc.subject.keywordYOLOspa
dc.subject.keywordMaturity detectionspa
dc.subject.proposalInteligencia Artificialspa
dc.subject.proposalClasificaciónspa
dc.subject.proposalYOLOspa
dc.subject.proposalDetección de madurezspa
dc.titleClasificador de Fresa Usando Técnicas de Inteligencia Artificialspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2024cartaderechosdeautor.pdf
Tamaño:
222.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
2024juancamargo.pdf
Tamaño:
1.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
APROBACIÓN TRABAJOS DE GRADO CRAI2.pdf
Tamaño:
376.97 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: