Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas

dc.contributor.advisorMartínez Bonilla, Carlos Andrésspa
dc.contributor.authorPeña Gonzalez, Paula Tatianaspa
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2021-03-16T18:33:12Z
dc.date.available2021-03-16T18:33:12Z
dc.date.issued2021-03-15spa
dc.descriptionEn la última década la contaminación por metales pesados en medios acuosos se ha convertido en un problema mundial que ha aumentado con la confluencia de las fuentes naturales y principalmente, las actividades antropogénicas (actividades industriales, actividades mineras, uso de plaguicidas, entre otros). Esta condición ha generado un aumento en la concentración de metales pesados en los efluentes hídricos, generando como consecuencia un riesgo para la salud de cualquier sistema vivo. Los iones metálicos cuentan con la capacidad de bioacumularse y biomagnificarse en el organismo, provocando la alteración de numerosos procesos bioquímicos y fisiológicos en animales y plantas, desencadenando diversas patologías. Actualmente, la identificación y remoción de metales pesados de fuentes hídricas es un proceso costoso, lento y, en la mayoría de los casos, no se lleva a cabo adecuadamente debido a las complicadas técnicas instrumentales empleadas y sus límites de detección. En Colombia, por ejemplo, el monitoreo de estos metales en agua para consumo humano no se exige según el Capítulo V y VI de la Resolución 2115 de 2007, por lo tanto, no se lleva a cabo un control de este tipo de contaminantes en las fuentes hídricas del país. En la actualidad, la identificación y cuantificación de metales pesados se lleva a cabo mediante equipos y procedimientos de mediana/alta complejidad y elevado costo (técnicas como absorción atómica y espectrometría de masas). Esta situación es poco favorable frente a la necesidad - regional, nacional y mundial- de identificación y cuantificación rápida de este tipo iones. De modo que se pueda evidenciar la contaminación del efluente de manera eficiente. Hoy en día han surgido diversos métodos que pueden llevar a cabo la identificación y cuantificación de estos iones de forma rápida y selectiva. En este conjunto de métodos se destaca el uso de diversos nanomateriales que, debido a sus propiedades luminiscentes, se han convertido en quimiosensores de interés en este campo. Dentro de este tipo de nanomateriales los quantum dots o puntos cuánticos (QDs) responden a la presencia de ciertos metales pesados modificando su luminiscencia en función de la concentración del metal. Adicionalmente, el uso de estos nanomateriales en conjunto con un soporte de nanocelulosa (NC) permite potenciar sus propiedades, convirtiéndolos en un material prometedor en la identificación in situ de metales pesados en efluentes hídricos. Teniendo en cuenta el interés actual por técnicas de detección rápidas para metales pesados, en la presente investigación se llevó a cabo la síntesis acuosa coloidal, la producción de QDs de CdTe y CdTe/ZnS, los cuales cumplen su función como agentes sensibilizantes permitiendo llevar a cabo la generación del quimiosensor a base de su acoplamiento con la nanocelulosa bacteriana (NCB), evaluando diferentes relaciones de carga en el nanocomposito. Para el nanopapel o quimiosensor se evidenció que la carga de NCB óptima por unidad de área fue de 2.21 mg NCB/cm2, esta relación permitió obtener un nanopapel homogéneo y apropiado para la adsorción de los QDs. Adicionalmente, el quimiosensor y los elementos que lo constituyeron fueron caracterizados estructural y morfológicamente mediante técnicas como UV-vis, IR, DRX, fluorescencia, SEM y TEM que permitieron identificar el tamaño de partícula de los QDs (~ 2.4 nm), contando con un núcleo con estructura cristalina cúbica centrada en las caras (CCC) y ligandos orgánicos evidenciados mediante IR mostrando sus señales características. Finalmente, el quimiosensor mostró ser sensible a metales pesados tales como el cromo, la plata, el cobre, el mercurio y el plomo, encontrándose que el mercurio es el metal más influyente en la variación de la fluorescencia de los QDs generando una extinción casi total de la fluorescencia del quimiosensor en concentraciones sobre 1 µM.spa
dc.description.abstractIn the last decade, contamination by heavy metals in aqueous media has become a global problem that has increased with the confluence of natural sources and, mainly, anthropogenic activities (industrial activities, mining activities, use of pesticides, among others). This condition has generated an increase in the concentration of heavy metals in water effluents, generating therefore a risk for the health of any living system. Metal ions have the capacity to bioaccumulate and biomagnifies in the organism, causing the alteration of numerous biochemical and physiological processes in animals and plants, triggering various pathologies. Currently, the identification and removal of heavy metals from water sources is a costly and slow process and, in most cases, it is not carried out adequately due to the complicated instrumental techniques used and their detection limits. In Colombia, for example, the monitoring of these metals in water for human consumption is not required according to Chapter V and VI of Resolution 2115 of 2007, therefore, there is no control of this type of contaminants in the country's water sources. Currently, the identification and quantification of heavy metals is carried out using medium/high complexity and high-cost equipment and procedures (techniques such as atomic absorption and mass spectrometry). This situation is unfavorable in view of the regional, national, and global need for rapid identification and quantification of this type of ions. So that the contamination of the effluent can be evidenced in an efficient manner. Nowadays, several methods have emerged that can carry out the identification and quantification of these ions in a fast and selective way. Within this set of methods, the use of various nanomaterials stands out, which, due to their luminescent properties, have become chemosensors of interest in this field. Within this type of nanomaterials, quantum dots (QDs) respond to the presence of certain heavy metals by modifying their luminescence depending on the concentration of the metal. Additionally, the use of these nanomaterials in conjunction with a nanocellulose (NC) support enhances their properties, making them a promising material for the in-situ identification of heavy metals in water effluents. Considering the current interest in rapid detection techniques for heavy metals, in the present work, the production of CdTe and CdTe/ZnS QDs was carried out by colloidal aqueous synthesis, which fulfill their function as sensitizing agents allowing the generation of the chemosensor based on their coupling with bacterial nanocellulose (NCB), evaluating different charge ratios in the nanocomposite. For the nano paper or chemosensor, it was evidenced that the optimal NCB loading per unit area was 2.21 mg NCB/cm2, this ratio allowed obtaining a homogeneous and appropriate nano paper for the adsorption of QDs. Additionally, the chemosensor and its constituent elements were structurally and morphologically characterized by UV-vis, IR, XRD, fluorescence, SEM and TEM techniques that allowed identifying the particle size of the QDs (~ 2.4 nm), having a core with a face-centered cubic crystalline structure (CCC) and organic ligands evidenced by IR showing their characteristic signals. Finally, the chemosensor was shown to be sensitive to heavy metals such as chromium, silver, copper, mercury, and lead, finding that mercury is the most influential metal in the variation of the fluorescence of the QDs generating an almost total quenching of the fluorescence of the chemosensor at concentrations above 1 µM.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPeña, P. T. (2021) Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana / Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas. [Tesis de pregrado] Universidad Santo Tomás, Bucaramanga, Colombia.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/32504
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programPregrado Química Ambientalspa
dc.relation.referencesAbol-Fotouch, D., Hassan, M., Shokry, H., Roig, A., Azab, M., & Hady, A. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Acientific Reports, 10(1), 3491. https://doi.org/10.1038/s41598-020-60315-9spa
dc.relation.referencesAnderson, N., Hendricks, M., Choi, J., & Owen, J. (2013). Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding. American Chemical Society, 135, 18536–18548. https://doi.org/10.1021/ja4086758spa
dc.relation.referencesAnsari, Z., Singha, S. S., Saha, A., & Sen, K. (2017). Hassle free synthesis of nanodimensional Ni, Cu and Zn sulfides for spectral sensing of Hg, Cd and Pb: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 67–78. https://doi.org/10.1016/j.saa.2017.01.005spa
dc.relation.referencesAnton-Sales, I., Beejmann, U., Laromaine, A., Roig, A., & Kralisch, D. (2019). Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 20(8), 808–822. https://doi.org/10.2174/1389450120666181129092144spa
dc.relation.referencesArulraj, A. D., Devasenathipathy, R., Chen, S.-M., Vasantha, V. S., & Wang, S.-F. (2015). Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium. Sensing and Bio-Sensing Research, 6, 19–24. https://doi.org/10.1016/j.sbsr.2015.10.004spa
dc.relation.referencesÁvila, J. A. (2019). Obtención Y Esterificación Sostenible De Nanocelulosa Bacteriana Para Usos Que Requieren Regular La Polaridad De Las Nanofibras. Instituto de tecnología en polímeros y nanotecnología.spa
dc.relation.referencesBoonmee, C., Noipa, T., Tuntulani, T., & Ngeontae, W. (2016). Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 161–168. https://doi.org/10.1016/j.saa.2016.05.007spa
dc.relation.referencesBorgohain, R., Boruah, P. K., & Baruah, S. (2016). Heavy-metal ion sensor using chitosan capped ZnS quantum dots. Sensors and Actuators B: Chemical, 226, 534–539. https://doi.org/10.1016/j.snb.2015.11.118spa
dc.relation.referencesCardona, S. (2020). Degradación fotocatalítica del 2,4 dinitrofenol con puntos cuánticos de CdSe/ZnS. Universidad Nacional de Colombia.spa
dc.relation.referencesChakraborty, S., & Hussain, S. A. (2020). Fluorescence resonance energy transfer (FRET) between acriflavine and CdTe quantum dot. Materials Today: Proceedings, 3–4. https://doi.org/10.1016/j.matpr.2020.02.757spa
dc.relation.referencesChandan, R., Schiffman, J. D., & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 258, 1191–1214. https://doi.org/10.1016/j.snb.2017.11.189spa
dc.relation.referencesChatzigoulas, A., Karathanou, K., Dellis, D., & Cournia, Z. (2018). NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. Journal od Chemical Information and Modeling, 58(12), 2380–2386. https://doi.org/10.1021/acs.jcim.8b00269spa
dc.relation.referencesChen, J.-L., & Zhu, C.-Q. (2005). Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta, 546(2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006spa
dc.relation.referencesChen, J., Zheng, A., Gao, Y., He, C., Wu, G., Chen, Y., Kai, X., & Zhu, C. (2008). Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3), 1044–1052. https://doi.org/10.1016/j.saa.2007.06.021spa
dc.relation.referencesChiodo, S., Russi, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. https://doi.org/10.1063/1.2345197spa
dc.relation.referencesCortez, Y. (2018). Análisis de la eficiencia de nanotubos de TiO2 con puntos cuánticos CuInS2 en su estructura como fotocatalizadores para la degradación de fenol en solución acuosa. Escuela Politécnica Nacional.spa
dc.relation.referencesCostas, I., Romero, V., Lavilla, I., & Bendicho, C. (2014). An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends in Analytical Chemistry, 57, 64–72. https://doi.org/10.1016/j.trac.2014.02.004spa
dc.relation.referencesDaud, J., & Lee, K.-Y. (2017). Surface Modification of Nanocellulose. En H. Kargarzadeh, I. Ahmad, S. Thomas, & A. Dufresne (Eds.), Handbook of Nanocellulose and Cellulose (pp. 101–122). Wiley-VCH. https://doi.org/10.1002/9783527689972.ch3spa
dc.relation.referencesDevi, P., Rajput, P., Thakur, A., Kim, K.-H., & Kumar, P. (2019). Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends in Analytical Chemistry, 114, 171–195. https://doi.org/10.1016/j.trac.2019.03.003spa
dc.relation.referencesDolez, P. I. (2015). Chapter 1.1 - Nanomaterials Definitions, Classifications, and Applications (P. I. Dolez (Ed.); pp. 3–40). Elsevier. https://doi.org/10.1016/B978-0-444-62747-6.00001-4spa
dc.relation.referencesDral, P. O., Wu, X., & Thiel, W. (2019). Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation, 15(3), 1743–1760. https://doi.org/10.1021/acs.jctc.8b01265spa
dc.relation.referencesElmizadeh, H., Soleimani, M., Faridbod, F., & Bardajee, G. (2019). Fabrication of a nanomaterial-based fluorescence sensor constructed from ligand capped CdTe quantum dots for ultrasensitive and rapid detection of silver ions in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 291–298. https://doi.org/10.1016/j.saa.2018.12.016spa
dc.relation.referencesEom, H., Hwang, J., Hassan, S. H. A., Joo, J. H., Hur, J. H., Chon, K., Jeon, B.-H., Song, Y.-C., Chae, K.-J., & Oh, S.-E. (2019). Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. Journal of Microbiological Methods, 161, 35–42. https://doi.org/10.1016/j.mimet.2019.04.007spa
dc.relation.referencesFilali, S., Pirot, F., & Miossec, P. (2019). Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends in Biotechnology, 163–177. https://doi.org/10.1016/j.tibtech.2019.07.013spa
dc.relation.referencesFriesner, R. A., & Jerome, S. V. (2017). Localized orbital corrections for density functional calculations on transition metal containing systems. Coordination Chemistry Reviews, 344, 205–213. https://doi.org/10.1016/j.ccr.2017.02.014spa
dc.relation.referencesGheshlaghi, N., Pisheh, H. S., Karim, M. R., Malkoc, D., & Ünlü, H. (2016). Interfacial strain effect on type-I and type-II core/shell quantum dots. Superlattices and Microstructures, 97, 489–494. https://doi.org/10.1016/j.spmi.2016.07.020spa
dc.relation.referencesGhosh, R., & Paria, S. (2011). Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112(4), 2373–2433. https://doi.org/10.1021/cr100449nspa
dc.relation.referencesGoyeneche, L. M. (2018). Determinación del tamaño de partícula mediante diracción de rayos X. Universidad de Cantabria.spa
dc.relation.referencesGui, R., An, X., Su, H., Shen, W., Chen, Z., & Wang, X. (2012). A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF–ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta, 94, 257–262. https://doi.org/10.1016/j.talanta.2012.03.036spa
dc.relation.referencesGuyot, P. (2008). Colloidal quantum dots. Comptes Rendus Physique, 9(8), 777–787. https://doi.org/10.1016/j.crhy.2008.10.006spa
dc.relation.referencesHestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345–352. https://doi.org/10.1042/bj0580345spa
dc.relation.referencesHosseini, M., Ganjali, M. R., Vaezi, Z., Faridbod, F., Arabsorkhi, B., & Sheikhha, M. H. (2014). Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 116–120. https://doi.org/10.1016/j.saa.2013.10.074spa
dc.relation.referencesHuang, X., Tong, X., & Wang, Z. (2020). Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology, 100018. https://doi.org/10.1016/j.jnlest.2020.100018spa
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua 2018 (pp. 229–232). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdfspa
dc.relation.referencesIDEAM, & INVEMAR. (2018). Protocolo de Monitoreo del Agua (pp. 76–77).spa
dc.relation.referencesImran, M., Jawwad, M., Kuznetsov, A., Idrees, N., Iqbal, J., & Ali, A. (2019). Computational investigations into the structural and electronic properties of CdnTen (n=1–17) quantum dots. The Royal Society of Chemistry, 9, 5091–5099. https://doi.org/10.1039/c8ra09465aspa
dc.relation.referencesJaiswal, J. K., & Simon, S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology, 14(9), 497–504. https://doi.org/10.1016/j.tcb.2004.07.012spa
dc.relation.referencesJang, Y., Shapiro, A., Isarov, M., Rubin-Brusilovski, A., Safran, A., Budniak, A., Horani, F., Dehnel, J., Sashchiuk, A., & Lifshitz, E. (2017). Interface control of electronic and optical properties in IV-VI and II-VI core/shell coloidal quantum dots: A review. Chemical Communications, 53(6), 1002–1024. https://doi.org/10.1039/C6CC08742Fspa
dc.relation.referencesJiao, Z., Zhang, P., Chen, H., Li, C., Chen, L., Fan, H., & Cheng, F. (2019). Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sensors and Actuators B: Chemical, 295, 110–116. https://doi.org/10.1016/j.snb.2019.05.059spa
dc.relation.referencesJiménez-López, J., Rodrigues, S. S. M., Ribeiro, D. S. M., Ortega-Barrales, P., Ruiz-Medina, A., & Santos, J. L. M. (2019). Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 212, 246–254. https://doi.org/10.1016/j.saa.2019.01.005spa
dc.relation.referencesJoseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198spa
dc.relation.referencesKamide, K. (2005). 1- Introduction. En K. Kamide (Ed.), Cellulose and Cellulose Derivatives (pp. 1–23). Elsevier Science. https://doi.org/10.1016/B978-044482254-3/50003-5spa
dc.relation.referencesKilina, S., Ivaniv, S., & Tretiak, S. (2009). Effect of Surface Ligands on Optical and Electronic Spectra of Semiconductor Nanoclusters. Journal of the American Chemical Society, 131(22), 7717–7726. https://doi.org/10.1021/ja9005749spa
dc.relation.referencesKilina, S., Tamukong, P., & Kilin, D. (2016). Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. American Chemical Society, 49, 2127–2135. https://doi.org/10.1021/acs.accounts.6b00196spa
dc.relation.referencesKim, J., Oh, J. S., Park, K. C., Gupta, G., & Lee, C. Y. (2019). Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorganica Chimica Acta, 486, 69–73. https://doi.org/10.1016/j.ica.2018.10.025spa
dc.relation.referencesKuang, Y., Wang, X., Tian, X., Yang, C., Li, Y., & Nie, Y. (2019). Silica-embedded CdTe quantum dots functionalized with rhodamine derivative for instant visual detection of ferric ions in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 372, 140–146. https://doi.org/10.1016/j.jphotochem.2018.12.015spa
dc.relation.referencesKumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364spa
dc.relation.referencesKuznetsov, A., & Beratan, D. (2014). Structural and Electronic Properties of Bare and Capped Cd33Se33 and Cd33Te33 Quantum Dots. American Chemical Society, 118, 7094–7109. https://doi.org/10.1021/jp4007747spa
dc.relation.referencesLabeb, M., Sakr, A.-H., Soliman, M., Abdel-Fattah, T. M., & Ebrahim, S. (2018). Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Optical Materials, 79, 331–335. https://doi.org/10.1016/j.optmat.2018.03.060spa
dc.relation.referencesLefebvre, P., Richard, T., Allègre, J., Mathieu, H., Pradel, A., Marc, J., Boudes, L., Granier, W., & Ribes, M. (1994). Sol-Gel preparation and optical characterization of sodium borosilicate glasses doped with II-VI semiconductor nanocrystals. Proceedings of SPIE - The International Society for Optical Engineering, 2288, 163–173. https://doi.org/10.1117/12.188948spa
dc.relation.referencesLiu, J., Lv, G., Gu, W., Li, Z., Tang, A., & Mei, L. (2017). A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. Journal of Materials Chemistry C, 5(20), 5024–5030. https://doi.org/10.1039/c7tc00935fspa
dc.relation.referencesLiu, S., Wang, Y.-M., & Han, J. (2017). Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 32, 78–103. https://doi.org/10.1016/j.jphotochemrev.2017.06.002spa
dc.relation.referencesLiu, Z., Mo, Z., Niu, X., Yang, X., Jiang, Y., Zhao, P., Liu, N., & Guo, R. (2020). Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 566, 357–368. https://doi.org/10.1016/j.jcis.2020.01.092spa
dc.relation.referencesMa, Q., Ha, E., Yang, F., & Su, X. (2011). Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film. Analytica Chimica Acta, 701(1), 60–65. https://doi.org/10.1016/j.aca.2011.04.051spa
dc.relation.referencesMarandi, M., Emrani, B., & Zare, H. (2017). Synthesis of highly luminescent CdTe / CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Optical Materials, 69, 358–366. https://doi.org/10.1016/j.optmat.2017.04.058spa
dc.relation.referencesMinambiente. (2020). Nomartiva Recurso Hídrico. https://www.minambiente.gov.co/index.php/gestion-integral-del-recurso-hidrico/normativa-recurso-hidricospa
dc.relation.referencesMishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005spa
dc.relation.referencesModlitbová, P., Novotný, K., Pořízka, P., Klus, J., Lubal, P., Zlámalová-Gargošová, H., & Kaiser, J. (2018). Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicology and Environmental Safety, 147, 334–341. https://doi.org/10.1016/j.ecoenv.2017.08.053spa
dc.relation.referencesNANO-SME. (2007). Aplicaciones industriales de la nanotecnología (pp. 25–41). Tresalia Comunication.spa
dc.relation.referencesNasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 1 - An Introduction to Nanotechnology (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 1–7). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00001-8spa
dc.relation.referencesNasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 4 - Applications of Nanotechnology in Daily Life (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 113–143). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3spa
dc.relation.referencesNguyen, K., Pachter, R., Jiang, J., & Day, P. N. (2018). Systematic Study of Structure, Stability, and Electronic Absorption of Tetrahedral CdSe Clusters with Carboxylate and Amine Ligands. The Journal of Pgysical Chemistry A, 122(33), 6704–6712. https://doi.org/10.1021/acs.jpca.8b02813spa
dc.relation.referencesOluwafemi, S., Revaprasadu, N., & Ramirez, A. (2008). A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Journal of Crystal Growth, 310(13), 3230–3234. https://doi.org/10.1016/j.jcrysgro.2008.03.032spa
dc.relation.referencesONU. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019 (pp. 14–17). UNESCO.spa
dc.relation.referencesParamanik, B., Bhattacharyya, S., & ´Patra, A. (2013). Detection of Hg2+ and F- ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QD nanocomposite. Chemistry-A European Journal, 19(19), 5980–5987. https://doi.org/10.1002/chem.201203576spa
dc.relation.referencesPatel, J., Jain, B., Singh, A. K., Susan, M. A. B. H., & Jean-Paul, L. (2020). Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchemical Journal, 155, 104755. https://doi.org/10.1016/j.microc.2020.104755spa
dc.relation.referencesPhanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004spa
dc.relation.referencesPloem, J. (1999). CHAPTER ONE - Fluorescence Microscopy (W. T. Mason (Ed.); pp. 3–13). Academic Press. https://doi.org/10.1016/B978-012447836-7/50003-8spa
dc.relation.referencesPooja, D., Saini, S., Thakur, A., Kumar, B., Tyagi, S., & Nayak, M. K. (2017). A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. Journal of Hazardous Materials, 328, 117–126. https://doi.org/10.1016/j.jhazmat.2017.01.015spa
dc.relation.referencesPradeep, T., & Anshup. (2009). Noble metal nanoparticles for water putification: A critical review. Thin Solid Films, 517(24), 6441–6478. https://doi.org/10.1016/j.tsf.2009.03.195spa
dc.relation.referencesRay, S., & Salehiyan, R. (2020). Chapter 2 - Fundamental definition and importance of nanomaterials, nanostructured, and bulk nanostructured materials (S. S. Ray & R. Salehiyan (Eds.); pp. 15–28). Elsevier. https://doi.org/10.1016/B978-0-12-816707-6.00002-Xspa
dc.relation.referencesReshma, V. G., & Mohanan, P. V. (2019). Quantum dots: Applications and safety consequences. Journal of Luminescence, 205, 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015spa
dc.relation.referencesResolución 2115 de 2007 (pp. 3–4). (2007). https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdfspa
dc.relation.referencesResolución 631 de 2015 (Vol. 2015, pp. 13–15). (2015). https://rds.org.co/es/recursos/resolucion-631-de-2015-parametros-vertimientosspa
dc.relation.referencesRodrigues, S. S. M., Ribeiro, D. S. M., Soares, J. X., Passos, M. L. C., Saraiva, M. L. M. F. S., & Santos, J. L. M. (2017). Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coordination Chemistry Reviews, 330, 127–143. https://doi.org/10.1016/j.ccr.2016.10.001spa
dc.relation.referencesRodríguez, C. (2019). Evolución de la calidad del río vetas relacionada con la minería aurifera practicada en la provincia de soto en Santander. Universidad de Manizales. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/3413/documento maestria FINAL 18 MAYO %282%29.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesRuiz, C., Soriano, L., & Valcárcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1–18. https://doi.org/j.trac.2016.11.007spa
dc.relation.referencesSafari, M., Najafi, S., Arkan, E., Amani, S., & Shahlaei, M. (2019). Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchemical Journal, 146, 293–299. https://doi.org/10.1016/j.microc.2019.01.019spa
dc.relation.referencesSánchez, A. (2016). Síntesis y caracterización de puntos cuánticos de PbSe con aplicaciones en celdas fotovoltaícas con configuración FTO/TiO2/CdS/PbSe/ZnS. Centro de Investigaciones en Óptica, A.Cspa
dc.relation.referencesSCOPUS. (2020a). Documents by country or territory (Vol. 2020, Número 3 de febrero de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sortspa
dc.relation.referencesSCOPUS. (2020b). Documents by country or territory (Vol. 2020, Número 13 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&sospa
dc.relation.referencesSCOPUS. (2020c). Documents by year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sortspa
dc.relation.referencesSCOPUS. (2020d). Documents by Year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&sospa
dc.relation.referencesShang, Z. Bin, Wang, Y., & Jin, W. J. (2009). Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta, 78(2), 364–369. https://doi.org/10.1016/j.talanta.2008.11.025spa
dc.relation.referencesSharma, A., Thakur, M., Bhattacharya, M., Mandal, T., & Goswami, S. (2019). Commercial application of cellulose nano-composites – A review. Biotechnology Reports, 21, e00316. https://doi.org/10.1016/j.btre.2019.e00316spa
dc.relation.referencesSmith, A., Duan, H., Rhyner, M., Ruan, G., & Nie, S. (2006). A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 8(33), 3895–3903. https://doi.org/10.1039/B606572Bspa
dc.relation.referencesSong, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, T. T., & Guo, M. (2020). Luminescent carbon quantum dots/nanofibrillated cellulose composite aerogel for monitoring adsorption of heavy metal ions in water. Optical Materials, 100, 109642. https://doi.org/10.1016/j.optmat.2019.109642spa
dc.relation.referencesSpeakman, S. (2008). Estimating Crystallite Size Using XRD (pp. 10–12). MIT Center for Materials Science and Engineering.spa
dc.relation.referencesTan, K., Heo, S., Foo, M., Chew, I. M., & Yoo, C. (2019). An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Science of The Total Environment, 650(1), 1309–1326. https://doi.org/10.1016/j.scitotenv.2018.08.402spa
dc.relation.referencesTang, A., Liu, Y., Wang, Q., Chen, R., Liu, W., Fang, Z., & Wang, L. (2016). A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydrate Polymers, 148, 29–35. https://doi.org/10.1016/j.carbpol.2016.04.034spa
dc.relation.referencesTarantini, A., Wegner, K. D., Dussert, F., Sarret, G., Beal, D., Mattera, L., Lincheneau, C., Proux, O., Truffier-Boutry, D., Moriscot, C., Gallet, B., Jouneau, P.-H., Reiss, P., & Carrière, M. (2019). Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 14, 100168. https://doi.org/10.1016/j.impact.2019.100168spa
dc.relation.referencesTomczak, N., Jańczewski, D., Han, M., & Vancso, G. J. (2009). Designer polymer-quantum dot architectures. Progress in Polymer Science, 34(5), 393–430. https://doi.org/10.1016/j.progpolymsci.2008.11.004spa
dc.relation.referencesTsay, J., Pflughoefft, M., Bentolila, L., & Weiss, S. (2004). Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals. Journal of the American Chemical Society, 126(7), 1926–1927. https://doi.org/10.1021/ja039227vspa
dc.relation.referencesUllah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155–166. https://doi.org/10.1016/j.trac.2018.01.002spa
dc.relation.referencesVareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126spa
dc.relation.referencesVasudevan, D., Trinchi, A., Hardin, S. G., & Cole, I. S. (2015). Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots. Journal of Luminescence, 166, 88–92. https://doi.org/10.1016/j.jlumin.2015.04.043spa
dc.relation.referencesVázquez, M. (2016). Sondas fluorescentes acuosolubles para metales tóxicos. Universidad de Santiago de Compostela.spa
dc.relation.referencesWagner, A. M., Knipe, J. M., Orive, G., & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63. https://doi.org/10.1016/j.actbio.2019.05.022spa
dc.relation.referencesWang, L., Ma, W., Xu, L., Chen, W., Zhu, Y., Xu, C., & Kotov, N. A. (2010). Nanoparticle-based environmental sensors. Materials Science and Engineering: R: Reports, 70(3), 265–274. https://doi.org/10.1016/j.mser.2010.06.012spa
dc.relation.referencesWei, Q., Nagi, R., Sadeghi, K., Feng, S., Yan, E., Ki, S. J., Caire, R., Tseng, D., & Ozcan, A. (2014). Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano, 8(2), 1121–1129. https://doi.org/10.1021/nn406571tspa
dc.relation.referencesWhitehead, P. G., Bussi, G., Peters, R., Hossain, M. A., Softley, L., Shawal, S., Jin, L., Rampley, C. P. N., Holdship, P., Hope, R., & Alabaster, G. (2019). Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Science of The Total Environment, 697, 134090. https://doi.org/10.1016/j.scitotenv.2019.134090spa
dc.relation.referencesWu, Y., Sun, J., Zhang, Y., Pu, M., Zhang, G., He, N., & Zeng, X. (2017). Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor. ACS Applied Materials & Interfaces, 9(15), 13068–13078. https://doi.org/10.1021/acsami.7b02641spa
dc.relation.referencesXiao, J.-W., Ma, S., Yu, S., Zhou, C., Liu, P., Chen, Y., Zhou, H., Li, Y., & Chen, Q. (2018). Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 46, 45–53. https://doi.org/10.1016/j.nanoen.2018.01.035spa
dc.relation.referencesXu, Q., Cai, W., Li, W., Sreeprasad, T. S., He, Z., Ong, W.-J., & Li, N. (2018). Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 10, 222–240. https://doi.org/10.1016/j.mtener.2018.09.005spa
dc.relation.referencesXue, S., Wang, P., & Chen, K. (2020). A novel fluorescent chemosensor for detection of mercury(II) ions based on dansyl-peptide and its application in real water samples and living LNcap cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117616. https://doi.org/10.1016/j.saa.2019.117616spa
dc.relation.referencesYang, Y., Jiang, J., Shen, G., & Yu, R. (2009). An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Analytica Chimica Acta, 636(1), 83–88. https://doi.org/10.1016/j.aca.2009.01.038spa
dc.relation.referencesYu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860. https://doi.org/10.1021/cm034081kspa
dc.relation.referencesZeiri, N., Naifar, A., Nasrallah, S. A.-B., & Said, M. (2019). Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 36, 100725. https://doi.org/10.1016/j.photonics.2019.100725spa
dc.relation.referencesZhang, L., & Fang, M. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5(2), 128–142. https://doi.org/10.1016/j.nantod.2010.03.002spa
dc.relation.referencesZhang, M., Zhu, G., Li, T., Lou, X., & Zhu, L. (2019). A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Optics Communications. https://doi.org/10.1016/j.optcom.2019.124750spa
dc.relation.referencesZhang, Q., Zhang, L., Wu, W., & Xiao, H. (2019). Methods and Applications of Nanocellulose Loaded with Inorganic Nanomaterials: A review. Carbohydrate Polymers, 115454. https://doi.org/10.1016/j.carbpol.2019.115454spa
dc.relation.referencesZhang, Ya-nan, Sun, Y., Cai, L., Gao, Y., & Cai, Y. (2020). Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement, 107742. https://doi.org/10.1016/j.measurement.2020.107742spa
dc.relation.referencesZhang, Yonghong, Guo, Q., Huang, S., & Suo, F. (2016). The Adsorption of Ag on (CdTe)13 Core-Cage Nanocluster: A Computational Study. Journal of Cluster Science, 27(3), 1057–1066. https://doi.org/10.1007/s10876-016-0992-0spa
dc.relation.referencesZhao, Y., Xu, M., Liu, Q., Wang, Z., Zhao, L., & Chen, Y. (2018). Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Marine Pollution Bulletin, 137, 601–609. https://doi.org/10.1016/j.marpolbul.2018.10.044spa
dc.relation.referencesZheng, D., Zhao, P., & Zhu, L. (2019). Non-conjugated and π-conjugated functional ligands on semiconductive quantum dots. Composites Communications, 11, 21–26. https://doi.org/10.1016/j.coco.2018.10.008spa
dc.relation.referencesZheng, J., Gao, S., & Ying, J. (2007). Synthesis and Cell‐Imaging Applications of Glutathione‐Capped CdTe Quantum Dots. Advanced Materials, 19(3), 376–380. https://doi.org/10.1002/adma.200600342spa
dc.relation.referencesZhou, Z.-Q., Liao, Y.-P., Yang, J., Huang, S., Xiao, Q., Yang, L.-Y., & Liu, Y. (2020). Rapid ratiometric detection of Cd2+ based on the formation of ZnSe/CdS quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117795. https://doi.org/10.1016/j.saa.2019.117795spa
dc.relation.referencesZhu, C., Chen, Z., Gao, S., Goh, B. L., Samsudin, I. Bin, Lwe, K. W., Wu, Y., Wu, C., & Su, X. (2019). Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 29(6), 628–640. https://doi.org/10.1016/j.pnsc.2019.11.007spa
dc.relation.referencesZou, L., Gu, Z., & Sun, M. (2015). Review of the application of quantum dots in the heavy-metal detection. Toxicological & Environmental CHemistry, 97(3–4), 477–490. https://doi.org/10.1080/02772248.2015.1050201spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cb
dc.rights.localAcceso cerradospa
dc.subject.keywordNanomaterialsspa
dc.subject.keywordContaminationspa
dc.subject.keywordHeavy metalsspa
dc.subject.keywordBacterial cellulosespa
dc.subject.keywordChemosensorsspa
dc.subject.lembAgua - Contenido de metales pesadosspa
dc.subject.lembContaminación del aguaspa
dc.subject.lembContaminación químicaspa
dc.subject.lembMetales pesadosspa
dc.subject.proposalNanomaterialesspa
dc.subject.proposalContaminaciónspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalCelulosa bacterianaspa
dc.subject.proposalQuimiosensoresspa
dc.titleGeneración de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosasspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2021PeñaPaula.pdf
Tamaño:
6.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2021PeñaPaula1.pdf
Tamaño:
128.53 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación Facultad
Thumbnail USTA
Nombre:
2021PeñaPaula2.pdf
Tamaño:
165.39 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de Confidencialidad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: