Aprendizaje de movimientos en robot humanoide a partir de inferencia de objetivos
dc.contributor.advisor | Camacho Poveda, Edgar Camilo | spa |
dc.contributor.advisor | Higuera Arias, Carolina | spa |
dc.contributor.author | Suarez Huertas, Yeison Estiven | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084 | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh= | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=tJG988kAAAAJ&hl=es | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=ZaxycbsAAAAJ&hl=es | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-6084-2512 | spa |
dc.contributor.orcid | https://orcid.org/0000-0001-5141-0817 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-09-26T00:10:16Z | spa |
dc.date.available | 2020-09-26T00:10:16Z | spa |
dc.date.issued | 2020-08-16 | spa |
dc.description | Este documento presenta la aplicación del aprendizaje por refuerzo inverso (IRL por sus siglas en inglés) en un robot humanoide conocido como Poppy Torso, con el fin de realizar movimientos de las extremidades superiores. El aprendizaje por refuerzo inverso se basa en el aprendizaje a partir de las demostraciones (trayectorias) de un experto. Con el fin de obtener una utilidad final lo más cercana a la utilidad obtenida por el experto en su recorrido, previamente se implementa un aprendizaje por refuerzo (RL por sus siglas en inglés) con una recompensa plenamente establecida dentro del entorno diseñado, el cual logró cumplir el objetivo que corresponde a generar movimientos desde un punto aleatorio hasta un punto establecido. El robot en simulación logra en la mayoría de los casos (con un porcentaje del 97.5% realizado sobre 1000 pruebas) llegar a su objetivo, tanto por aprendizaje por refuerzo como por refuerzo inverso. | spa |
dc.description.abstract | This document presents the application of Inverse Reinforcement Learning (IRL) in a humanoid robot known as Poppy Torso, in order to perform upper extremity movements. Inverse Reinforcement Learning (IRL) is based on learning from the demonstrations (trajectories) of an expert. In order to obtain a final utility as close to the utility obtained by the expert in his task, reinforcement learning (RL) is previously implemented with a fully established reward within the designed environment, which achieved fulfill the objective that corresponds to generating movements from a random point to a set point. The robot in simulation achieves in most cases (with a percentage of 97.5% performed on 1000 tests) to reach its objective, both by reinforcement learning and by inverse reinforcement. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Electronico | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Suarez Huertas, Y. E. (2020). Aprendizaje de movimientos en robot humanoide a partir de inferencia de objetivos [tesis de pregrado, Universidad Santo Tomás] Repositorio instituconal - Universidad Santo Tomás | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/30072 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Electrónica | spa |
dc.publisher.program | Pregrado Ingeniería Electrónica | spa |
dc.relation.references | R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press, second ed., 1998. | spa |
dc.relation.references | C. H. Yeison Suarez and E. C. Camacho, “Inverse reinforcement learning application for discrete and continuous environments,” in AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application, Springer International Publishing, 2020. | spa |
dc.relation.references | J. G. Matthieu Lapeyre, Pierre Rouanet, “The poppy project.” https: //www.poppy-project.org/, 2012. | spa |
dc.relation.references | P. Manceron, “Ikpy library.” https://github.com/Phylliade/ikpy, 2018. | spa |
dc.relation.references | P. Abbeel and A. Y. Ng, ““apprenticeship learning via inverse reinforcement learning, ” in Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, (New York, NY, USA),” 2004. | spa |
dc.relation.references | H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning.” https://arxiv.org/pdf/1509.06461.pdf, 2015. | spa |
dc.relation.references | D. S. A. G. I. A. Volodymyr Mnih, Koray Kavukcuoglu, “Playing atari with deep reinforcement learning.” https://arxiv.org/pdf/1312. 5602.pdf, 2013. | spa |
dc.relation.references | N. Ratliff, J. A. Bagnell, and S. S. Srinivasa, “Imitation learning for locomotion and manipulation, ”in 2007 7th IEEE-RAS International Conference on Humanoid Robots. Nov. 2007. | spa |
dc.relation.references | A. J. Ijspeert, J. Nakanishi, and S. Schaal, ““movement imitation with nonlinear dynamical systems in humanoid robots, ” in Proceedings 2002 IEEE International Conference on Robotics and Automation,” vol. 2, p. 1398–1403, May 2002. | spa |
dc.relation.references | K. Mu¨lling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and generalize striking movements in robot table tennis,” The International Journal of Robotics Research, vol. 32, no. 3, p. 263–279, 2013. | spa |
dc.relation.references | B. D. Argall, S. Chernova, M. Veloso, and B. Browning, ““a survey of robot learning from demonstration, ” Robotics and Autonomous Systems,” vol. 57, no. 5, p. 469, 2009. | spa |
dc.relation.references | S. Calinon, F. Guenter, and A. Billard, ““on learning, representing, and generalizing a task in a humanoid robot, ” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),” vol. 37, p. 286–298, Apr. 2007. | spa |
dc.relation.references | P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization of motor skills by learning from demonstration, ” in 2009 IEEE International Conference on Robotics and Automation. May 2009. | spa |
dc.relation.references | T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel, ““deep imitation learning for complex manipulation tasks from virtual reality teleoperation, ” CoRR,” vol. abs/1710.04615, 2017. | spa |
dc.relation.references | B. C. Stadie, P. Abbeel, and I. Sutskever, “Third-Person Imitation Learning, ” ArXiv e-prints. Mar. 2017. | spa |
dc.relation.references | P. Sermanet, K. Xu, and S. Levine, ““unsupervised perceptual rewards for imitation learning, ” CoRR,” vol. abs/1612.06699, 2017. | spa |
dc.relation.references | P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine, “Time-contrastivenetworks: Self-supervised learning from video. 2018. | spa |
dc.relation.references | B. Piot, M. Geist, and O. Pietquin, ““bridging the gap between imitation learning and inverse reinforcement learning,” vol. 28, p. 1814–1826, Aug. 2017. | spa |
dc.relation.references | D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature, vol. 529, pp. 484 EP –, Jan 2016. Article. | spa |
dc.relation.references | T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan, A. Sendonaris, I. Osband, G. Dulac-Arnold, J. Agapiou, J. Z. Leibo, and A. Gruslys, Deep q-learning from demonstrations. feb 2018. | spa |
dc.relation.references | G. Masuyama and K. Umeda, “Apprenticeship learning based on inconsistent demonstrations, ” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015. | spa |
dc.relation.references | I. A. D. S. Tom Schaul, John Quan, “Prioritized experience replay.” https://arxiv.org/pdf/1511.05952.pdf, 2016. | spa |
dc.rights | Atribución-NoComercial 2.5 Colombia | * |
dc.rights | Atribución-NoComercial 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/2.5/co/ | * |
dc.subject.keyword | Reinforcement learning | spa |
dc.subject.keyword | Inverse reinforcement learning | spa |
dc.subject.keyword | Computational neural networks | spa |
dc.subject.keyword | Machine Learning | spa |
dc.subject.keyword | Python | spa |
dc.subject.keyword | Poppy torso | spa |
dc.subject.keyword | Inference objectives | spa |
dc.subject.keyword | humanoid robot | spa |
dc.subject.lemb | Redes neuronales computacionales | spa |
dc.subject.lemb | Aprendizaje de máquina | spa |
dc.subject.lemb | Inferencia de objetivos | spa |
dc.subject.lemb | Humanoides | spa |
dc.subject.proposal | Aprendizaje por refuerzo | spa |
dc.subject.proposal | Aprendizaje por refuerzo inverso | spa |
dc.subject.proposal | Python | spa |
dc.subject.proposal | Poppy Torso | spa |
dc.subject.proposal | Inferencia de objetivos | spa |
dc.subject.proposal | Robot Humanoide | spa |
dc.title | Aprendizaje de movimientos en robot humanoide a partir de inferencia de objetivos | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2020yeisonsuarez.pdf
- Tamaño:
- 6.09 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- cartaderechosdeautor.pdf
- Tamaño:
- 3.69 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta derechos de autor

- Nombre:
- cartadeaprobación.pdf
- Tamaño:
- 128.71 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta de aprobación de la facultad
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: