Propuesta de Diseño de un Sistema de Energía Solar Fotovoltaica Caso de Aplicación en la Ciudad de Bogotá
dc.contributor.advisor | Sierra Alarcón, Adriana Fernanda | |
dc.contributor.author | Salamanca Avila, Sebastian | spa |
dc.contributor.corporatename | Universidad Santo Tomás | |
dc.contributor.orcid | https://orcid.org/0000-0002-9666-1246 | |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2017-07-25T16:38:24Z | spa |
dc.date.available | 2017-07-25T16:38:24Z | spa |
dc.date.issued | 2017 | spa |
dc.description | La energía solar es un recurso renovable, es decir, está siempre disponible, no se agota y se puede aprovechar esa energía del sol en cualquier momento gracias a que es posible almacenarla. Las difíciles condiciones medioambientales, la contaminación y de otro lado, el avance tecnológico en el desarrollo de celdas solares cada vez más eficientes, ha contribuido a que en la actualidad se promueva el uso de las energías renovables como la energía solar. Adicionalmente se ha incrementado el uso de estos sistemas dado que el nivel de contaminación es muy bajo y los costos de instalación se recuperan al reducir la facturación del consumo de energía, prestado por empresas de servicios públicos. Por lo tanto, el uso de sistemas fotovoltaicos es un tema de mucho interés en la actualidad, e implementar este tipo de sistemas fotovoltaicos aislados en la ciudad de Bogotá es posible. | spa |
dc.description.abstract | Solar energy is a renewable resource, that is, it is always available, it is not exhausted and you can take advantage of that energy from the sun at any time thanks to its storage. The difficult environmental conditions, pollution and, on the other hand, the technological advance in the development of increasingly efficient solar cells, has contributed to the current promotion of the use of renewable energy such as solar energy. In addition, the use of these systems has increased since the level of pollution is very low and installation costs are recovered by reducing the billing of energy consumption, provided by utilities. Therefore, the use of photovoltaic systems is a topic of great interest today, and to implement this type of isolated photovoltaic systems in the city of Bogota is possible. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Mecánico | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Salamanca Ávila, s. (2017). Propuesta de Diseño de un Sistema de Energía Solar Fotovoltaica Caso de Aplicación en la Ciudad de Bogotá. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional. | |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/4251 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Mecánica | spa |
dc.publisher.program | Pregrado Ingeniería Mecánica | spa |
dc.relation.references | Abella, M. A. (2016). 13. Dimensionado de Sistemas Fotvoltaicos: Otros métodos de dimensionado de sistemas FV autónomos. Centro de investigaciones Energeticas, Medioambientales y Tecnológicas, Departamento de Energia Renovables. CIEMAT. http://api.eoi.es/api_v1_dev.php/fedora/asset/eoi:45340/componente45338.pdf | |
dc.relation.references | Aguilar, F. J., Aledo, S., & Quiles, P. V. (2016). Experimental study of the solar photovoltaic contribution for the domestic hot water production with heat pumps in dwellings. Applied Thermal Engineering, 101, 1–11. http://doi.org/10.1016/j.applthermaleng.2016.01.127 | |
dc.relation.references | Al-Shohani, W. A. M., Al-Dadah, R., & Mahmoud, S. (2016). Reducing the thermal load of a photovoltaic module through an optical water filter. Applied Thermal Engineering, 109, 475–486. http://doi.org/10.1016/j.applthermaleng.2016.08.107 | |
dc.relation.references | Ben, M., & Ben, S. (2017). The role of renewable energy and agriculture in reducing CO 2 emissions : Evidence for North Africa countries. Ecological Indicators, 74, 295–301. http://doi.org/10.1016/j.ecolind.2016.11.032 | |
dc.relation.references | Cao, Y., Liu, C., Huang, Y., Wang, T., Sun, C., & Yuan, Y. (2017). Parallel algorithms for islanded microgrid with photovoltaic and energy storage systems planning optimization problem : Material selection and quantity demand optimization. Computer Physics Communications, 211, 45–53. http://doi.org/10.1016/j.cpc.2016.07.009 | |
dc.relation.references | Chandel, S. S., Nagaraju Naik, M., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084–1099. http://doi.org/10.1016/j.rser.2015.04.083 | |
dc.relation.references | Fouda, A., Nada, S. A., & Elattar, H. F. (2016). An integrated A/C and HDH water desalination system assisted by solar energy: Transient analysis and economical study. Applied Thermal Engineering, 108, 1320–1335. http://doi.org/10.1016/j.applthermaleng.2016.08.026 | |
dc.relation.references | García Marí Eugeni. (2016). Energia Solar Fotovoltaica Aislada. Applied Solar Energy, curso de energias renovables. Universidad Politecnica de Valencia. www.cursofotovoltaica.com | |
dc.relation.references | Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A., & Olang, T. A. (2017). crossmark. Renewable and Sustainable Energy Reviews, 70(May 2016), 161–184. http://doi.org/10.1016/j.rser.2016.08.030 | |
dc.relation.references | Ghasemi Mobtaker, H., Ajabshirchi, Y., Ranjbar, S. F., & Matloobi, M. (2016). Solar energy conservation in greenhouse: Thermal analysis and experimental validation. Renewable Energy, 96, 509–519. http://doi.org/10.1016/j.renene.2016.04.079 | |
dc.relation.references | Islam, M. M., Pandey, A. K., Hasanuzzaman, M., & Rahim, N. A. (2016). Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems. Energy Conversion and Management, 126, 177–204. http://doi.org/10.1016/j.enconman.2016.07.075 | |
dc.relation.references | Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. http://doi.org/10.1016/j.rser.2016.05.022 | |
dc.relation.references | Lewis, N. S. (2007). Solar Energy Use, 798. http://doi.org/10.1126/science.1137014 | |
dc.relation.references | Lúcio, G., Filho, T., Adriano, C., Mambeli, R., Felipe, I., Dos, S., & Braga, G. (2016). Solar Energy Materials & Solar Cells Study of the energy balance and environmental liabilities associated with the manufacture of crystalline Si photovoltaic modules and deployment in different regions. Solar Energy Materials and Solar Cells, 144, 383–394. http://doi.org/10.1016/j.solmat.2015.09.023 | |
dc.relation.references | Muhsen, D. H., Ghazali, A. B., & Khatib, T. (2016). Multiobjective differential evolution algorithm based sizing of a standalone photovoltaic water pumping system. Energy Conversion and Management, 118, 32–43. http://doi.org/10.1016/j.enconman.2016.03.074 | |
dc.relation.references | Muhsen, D. H., Ghazali, A. B., Khatib, T., Abed, I. A., & Natsheh, E. M. (2016). Sizing of a standalone photovoltaic water pumping system using a multi-objective evolutionary algorithm. Energy, 109, 961–973. http://doi.org/10.1016/j.energy.2016.05.070 | |
dc.relation.references | Olaya, Y., Arango-Aramburo, S., & Larsen, E. R. (2016). How capacity mechanisms drive technology choice in power generation: The case of Colombia. Renewable and Sustainable Energy Reviews, 56, 563–571. http://doi.org/10.1016/j.rser.2015.11.065 | |
dc.relation.references | Peralta, L., & Eduardo, R. (2011). La energía solar fotovoltaica como factor de desarrollo en zonas rurales de Colombia. caso: vereda Carupana, municipio de Tauramena, departamento de Casanare. | |
dc.relation.references | Rosso-Cerón, A. M., & Kafarov, V. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 10, 103–110. http://doi.org/10.1016/j.coche.2015.08.003 | |
dc.relation.references | Senturk, A., & Eke, R. (2017). A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values. Renewable Energy, 103, 58–69. http://doi.org/10.1016/j.renene.2016.11.025 | |
dc.relation.references | Valer, L. R., Melendez, T. A., Fedrizzi, M. C., Zilles, R., & de Moraes, A. M. (2016). Variable-speed drives in photovoltaic pumping systems for irrigation in Brazil. Sustainable Energy Technologies and Assessments, 15, 20–26. http://doi.org/10.1016/j.seta.2016.03.003 | |
dc.relation.references | Wahyuni, N. S., Wulandari, S., Wulandari, E., & Pamuji, D. S. (2015). Integrated Communities for the Sustainability of Renewable Energy Application: Solar Water Pumping System in Banyumeneng Village, Indonesia. Energy Procedia (Vol. 79). Elsevier B.V. http://doi.org/10.1016/j.egypro.2015.11.604 | |
dc.relation.references | Yahyaoui, I., Chaabene, M., & Tadeo, F. (2015). Evaluation of Maximum Power Point Tracking algorithm for off-grid photovoltaic pumping. Sustainable Cities and Society, 25, 65–73. http://doi.org/10.1016/j.scs.2015.11.005 | |
dc.relation.references | Zhou, J., Zhang, Z., Liu, H., & Yi, Q. (2017). Temperature distribution and back sheet role of polycrystalline silicon photovoltaic modules. Applied Thermal Engineering, 111, 1296–1303. http://doi.org/10.1016/j.applthermaleng.2016.10.095 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.lemb | Ingeniería mecánica | |
dc.subject.lemb | Diseño de sistemas | |
dc.subject.lemb | Energía solar | |
dc.subject.proposal | Energía solar | spa |
dc.subject.proposal | Sistemas fotovoltaicos | spa |
dc.subject.proposal | Componentes de sistemas PV | spa |
dc.subject.proposal | Diseño de sistemas PV | spa |
dc.title | Propuesta de Diseño de un Sistema de Energía Solar Fotovoltaica Caso de Aplicación en la Ciudad de Bogotá | spa |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 4 de 4
Cargando...
- Nombre:
- SalinasSebastian2017.pdf
- Tamaño:
- 613.32 KB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- 2017cartadefacultad.pdf
- Tamaño:
- 33.29 KB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- 2017sebastiánsalamancaCDA.pdf
- Tamaño:
- 91.42 KB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- 2017sebastiánsalamancaFED.pdf
- Tamaño:
- 108.22 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: