Sistema de Navegación en Vehículos Autónomos a Partir del Control Predictivo por Modelo en un Escenario con Obstáculos

dc.contributor.advisorCalderon Chávez, Juan Manuel
dc.contributor.advisorAmaya, Sindy Paola
dc.contributor.authorCorredor Cely, Jorge Luis
dc.contributor.authorGarcia Carrillo, Juan Camilo
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000796425spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001767648spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001767652spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=Gg2sofAAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0002-4471-3980spa
dc.contributor.orcidhttps://orcid.org/0000-0002-1714-1593spa
dc.contributor.orcidhttps://orcid.org/0000-0002-3210-6833spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2024-04-11T17:04:50Z
dc.date.available2024-04-11T17:04:50Z
dc.date.issued2023
dc.descriptionEl presente proyecto de grado se enfoca en el diseño de un sistema de navegación para un vehículo autónomo utilizando el enfoque de Control predictivo por modelo en un ambiente de simulación. El MPC es una técnica de control avanzada que utiliza un modelo matemático del sistema y un horizonte de predicción para calcular y aplicar de manera óptima las acciones de control. El objetivo principal de este proyecto es diseñar y evaluar un sistema de navegación utilizando MPC en un entorno simulado para un vehículo autónomo. Si bien la implementación en el mundo real conlleva desafíos prácticos adicionales, la simulación ofrece un entorno seguro y controlado para probar y perfeccionar el sistema antes de considerar su implementación práctica. El sistema de navegación propuesto se basará en una combinación de sensores avanzados proveídos por el ambiente integrado de simulación, como cámaras, LiDAR y radar, para obtener información precisa sobre el entorno circundante. Esta información se fusionará y procesará utilizando algoritmos de percepción y localización, permitiendo al sistema construir un modelo dinámico del entorno y tomar decisiones informadas en función de los objetivos y las restricciones definidas. El diseño del sistema de navegación se llevará a cabo utilizando herramientas y lenguajes de programación adecuados. Se considerarán aspectos de seguridad, rendimiento y eficiencia para garantizar la viabilidad y la aplicabilidad práctica del sistema, incluso en un ambiente simulado.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCorredor Cely, J. L. y García Carrillo, J. C. (2023). Sistema de Navegación en Vehículos Autónomos a Partir del Control Predictivo por Modelo en un Escenario con Obstáculos. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/54539
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesZhang, H., & Braun, S. (2017). Signal processing and control challenges for smart vehicles. Mechanical Systems And Signal Processing, 87, 1-3. https://doi.org/10.1016/j.ymssp.2016.11.016spa
dc.relation.referencesToquica Giraldo, E, Pérez Mojica, F y Rincón Figueroa, M. (2020). La seguridad vial en Bogotá D.C. desde la teoría de la organización y administración pública periodo 2010 – 2019. Universidad Santo tomás.spa
dc.relation.referencesGuerrero-ibanez, J. y Zeadally, S. (2015). Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. in IEEE Wireless Communications, vol. 22, no. 6, pp. 122-128. https://doi.org/10.1109/MWC.2015.7368833.spa
dc.relation.referencesYoon, J., Cho, W., Yi, K., & Koo, B. (2008). Unified Chassis Control for Vehicle Rollover Prevention. IFAC Proceedings Volumes, 41(2), 5682-5687. https://doi.org/10.3182/20080706-5-kr-1001.00958spa
dc.relation.referencesKatrakazas, C., Quddus, M., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, 416-442. https://doi.org/10.1016/j.trc.2015.09.011spa
dc.relation.referencesShen, C., Shi, Y., & Buckham, B. (2016, 22 septiembre). Integrated Path Planning and Tracking Control of an AUV: A Unified Receding Horizon Optimization Approach. IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/7574368spa
dc.relation.referencesBulsara, A., Raman, A., Kamarajugadda, S., Schmid, M., & Krovi, V. (2020). Obstacle Avoidance Using Model Predictive Control: An Implementation and Validation Study Using Scaled Vehicles. SAE Technical Paper Series. https://doi.org/10.4271/2020-01-0109spa
dc.relation.referencesHussain, R., & Zeadally, S. (2018). Autonomous cars: Research results, issues, and future challenges. IEEE Communications Surveys & Tutorials, 21(2), 1275-1313.spa
dc.relation.referencesYu-Geng, X., De-Wei, L., & Shu, L. (2013). Model predictive control—status and challenges. Acta Automatica Sinica, 39(3), 222-236.spa
dc.relation.referencesDamtew, A., Erega, Y., Ebrahim, H., Tsegaye, S., & Msigie, D. (2018). The effect of long distance transportation stress on cattle: a review. Biomedical Journal, 2(5).spa
dc.relation.referencesClaypool, H., Bin-Nun, A., & Gerlach, J. (2017). Self-driving cars: The impact on people with disabilities. Newton, MA: Ruderman Family Foundation.spa
dc.relation.referencesWorland, J. (2016, 8 septiembre). Self-Driving Cars Could Help Save the Environment—Or Ruin It. It Depends on Us. TIME. https://time.com/4476614/self-driving-cars-environment/spa
dc.relation.referencesAhmadi, B. (2021). Design a Reliable Model Predictive Control for Path Following with Application to the Autonomous Vehicle and Considering Different Vehicle Models (Master's thesis, University of Waterloo).spa
dc.relation.referencesQian, X. (2016). Model predictive control for autonomous and cooperative driving (Doctoral dissertation, Université Paris sciences et lettres).spa
dc.relation.referencesDe La Fortelle, A., Qian, X., Diemer, S., Grégoire, J., Moutarde, F., Bonnabel, S., ... & Sjöberg, K. (2014, September). Network of automated vehicles: the AutoNet 2030 vision. In ITS World Congress.spa
dc.relation.referencesZiegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., ... & Zeeb, E. (2014). Making bertha drive—an autonomous journey on a historic route. IEEE Intelligent transportation systems magazine, 6(2), 8-20.spa
dc.relation.referencesPiatkowski, D. P., Pitla, S., Luck, J. D., & Hazelton, J. K. (2020). Preparing for a Driverless Future (No. MO50). Nebraska. Department of Transportation.spa
dc.relation.referencesZiegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., ... & Zeeb, E. (2014). Making bertha drive—an autonomous journey on a historic route. IEEE Intelligent transportation systems magazine, 6(2), 8-20.spa
dc.relation.referencesLima, P. F. (2018). Optimization-based motion planning and model predictive control for autonomous driving: With experimental evaluation on a heavy-duty construction truck (Doctoral dissertation, KTH Royal Institute of Technology).spa
dc.relation.referencesRosolia, U., Carvalho, A., & Borrelli, F. (2017, May). Autonomous racing using learning model predictive control. In 2017 American control conference (ACC) (pp. 5115-5120). IEEE.spa
dc.relation.referencesBimbraw, K. (2015, July). Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. In 2015 12th international conference on informatics in control, automation and robotics (ICINCO) (Vol. 1, pp. 191-198). IEEE.spa
dc.relation.referencesBrockett, R. W. (1983). Asymptotic stability and feedback stabilization. Differential geometric control theory, 27(1), 181-191.spa
dc.relation.referencesAndersen, H., Schwarting, W., Naser, F., Eng, Y. H., Ang, M. H., Rus, D., & Alonso-Mora, J. (2017, October). Trajectory optimization for autonomous overtaking with visibility maximization. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1-8). IEEE.spa
dc.relation.referencesAgrawal, M. (2020, 12 agosto). What is Model Predictive Control (MPC)? Technical Articles. https://control.com/technical-articles/what-is-model-predictive-control-mpc/spa
dc.relation.referencesJi, J., Khajepour, A., Melek, W. W., & Huang, Y. (2016). Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 66(2), 952-964.spa
dc.relation.referencesDu, X., Htet, K. K. K., & Tan, K. K. (2016). Development of a genetic-algorithm-based nonlinear model predictive control scheme on velocity and steering of autonomous vehicles. IEEE Transactions on Industrial Electronics, 63(11), 6970-6977.spa
dc.relation.referencesLima, P. F., Nilsson, M., Trincavelli, M., Mårtensson, J., & Wahlberg, B. (2017). Spatial model predictive control for smooth and accurate steering of an autonomous truck. IEEE Transactions on Intelligent Vehicles, 2(4), 238-250.spa
dc.relation.referencesLiu, J., Jayakumar, P., Stein, J. L., & Ersal, T. (2017). Combined speed and steering control in high-speed autonomous ground vehicles for obstacle avoidance using model predictive control. IEEE Transactions on Vehicular Technology, 66(10), 8746-8763.spa
dc.relation.referencesAndersen, H., Schwarting, W., Naser, F., Eng, Y. H., Ang, M. H., Rus, D., & Alonso-Mora, J. (2017, October). Trajectory optimization for autonomous overtaking with visibility maximization. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1-8). IEEE.spa
dc.relation.referencesChoi, Y., Lee, W., Kim, J., & Yoo, J. (2021). A variable-sampling time model predictive control algorithm for improving path-tracking performance of a vehicle. Sensors, 21(20), 6845.spa
dc.relation.referencesBoyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.spa
dc.relation.referencesLeyffer, S., & Mahajan, A. (2010). Nonlinear constrained optimization: methods and software. Argonee National Laboratory, Argonne, Illinois, 60439.spa
dc.relation.referencesIPOPT: Documentation. (s. f.). https://coin-or.github.io/Ipopt/spa
dc.relation.referencesKoren, Y., & Borenstein, J. (1991, April). Potential field methods and their inherent limitations for mobile robot navigation. In Icra (Vol. 2, No. 1991, pp. 1398-1404).spa
dc.relation.referencesArmyTanker. (s. f.). Slash 4X4 VXL: 1/10 Scale 4WD Electric Short Course Truck with TQiTM Traxxas LinkTM Enabled 2.4GHz Radio System & Traxxas Stability Management (TSM)®. Traxxas.com. https://traxxas.com/products/models/electric/slash-4x4-tsm?t=specsspa
dc.relation.referencesResource & Documentation Center. (s. f.). Intel. https://www.intel.com/content/www/us/en/resources-documentation/developer.html#gs.77uyt8spa
dc.relation.referencesVESC 6 MkVI PCB - The next generation - Benjamin Vedder Electronic Speed Controller. (s. f.). VESC 6 MkV - The Next Generation Benjamin Vedder Electronic Speed Controller. https://trampaboards.com/vesc-6-mkv--the-next-generation--benjamin-vedder-electronic-speed-controller-p-27517.htmlspa
dc.relation.referencesntel® NUC Products NUC11PA[x]i3/NUC11PA[x]i5/ NUC11PA[x]i7 Technical Product Specification Regulatory Models: NUC11PAK (Slim Kit/Mini PC) NUC11PAH (Tall Ki- t/Mini PC) NUC11PAQ (Kit/Mini PC Wireless Charging). (2022).spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordModel predictive controlspa
dc.subject.keywordFGMspa
dc.subject.keywordPath planningspa
dc.subject.keywordAutonomous vehiclesspa
dc.subject.lembIngeniería Electrónicaspa
dc.subject.lembDiseño, Navegaciónspa
dc.subject.lembVehículo Autónomospa
dc.subject.proposalControl predictivo por modelospa
dc.subject.proposalFGMspa
dc.subject.proposalPlanificación de rutasspa
dc.subject.proposalVehículos autónomosspa
dc.titleSistema de Navegación en Vehículos Autónomos a Partir del Control Predictivo por Modelo en un Escenario con Obstáculosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2024cartadefacultad.pdf
Tamaño:
160.36 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartaderechosdeautor.pdf
Tamaño:
393.96 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
2024jorgecorredor.pdf
Tamaño:
7.55 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: