Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo
dc.contributor.advisor | Cándela Soto, Angélica María | spa |
dc.contributor.author | Solognier Balcacer, Sallyslain Gisley | spa |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2021-02-15T15:02:41Z | spa |
dc.date.available | 2021-02-15T15:02:41Z | spa |
dc.date.issued | 2021-02-02 | spa |
dc.description | Ante la constante demanda de energía eléctrica, diversas tecnologías son estudiadas para así disminuir la dependencia a las energías convencionales que han llevado a un punto de quiebre las condiciones del medio ambiente. De esta forma, dentro de las biotecnologías recientes se encuentran las celdas de combustible microbianas aplicadas a plantas, la cual será el pilar de esta investigación. Así mismo, se busca realizar un estudio cienciométrico con la base de datos de Scopus, que permita la comparación de los documentos enfocados en la investigación respecto a la producción de energía eléctrica limpia a partir de celdas de combustible microbianas en plantas (CCM-P) con el fin de analizar los factores que principalmente abarcan el funcionamiento correcto de una CCMP y estudiar la posibilidad de implementar las CCMs en plantas aisladas dentro de un microcosmos cerrado, es decir, un terrario. Esta investigación busca plantear un prototipo ideal basándose en los resultados, previamente comparados, de diversos autores; el análisis prospecta posibles escenarios en la implementación de la biotecnología autosostenible. | spa |
dc.description.abstract | In the face of the constant demand for electrical energy, various technologies are studied to reduce dependence on conventional energies, which have led to a breaking point in environmental conditions. Thus, recent biotechnologies include microbial fuel cells applied to plants, which will be the mainstay of this research. Likewise, the aim is to carry out a scientometric study with the Scopus database, which allows the comparison of documents focused on research regarding the production of clean electrical energy from microbial fuel cells in plants (P-MFC) to analyze the factors that mainly encompass the correct functioning of a P-MFC and study the possibility of implementing the MFC in isolated plants within a closed microcosm, in other words, terrarium. This research seeks to propose an ideal prototype based on the previously compared results of various authors; the analysis prospects possible scenarios in the implementation of self-sustaining biotechnology. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniera Ambiental | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Solognier Balcacer, S. G. (2020). Estudio de caso : Energía a partir de plantas vivas Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo. Universidad Santo Tomás. | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/32130 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Ambiental | spa |
dc.publisher.program | Pregrado de Ingeniería Ambiental | spa |
dc.relation.references | Arends, J. B. A., Blondeel, E., Tennison, S. R., Boon, N., & Verstraete, W. (2012). Suitability of granular carbon as an anode material for sediment microbial fuel cells. Journal of Soils and Sediments, 12(7), 1197–1206. https://doi.org/10.1007/s11368-012-0537-6 | spa |
dc.relation.references | Arends, J. B. A., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., … Boon, N. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 98(7), 3205–3217. https://doi.org/10.1007/s00253-013-5328-5 | spa |
dc.relation.references | Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487 | spa |
dc.relation.references | Bagshaw Ward, N. (1899). Library of The New York Botanical Garden (Second). London. | spa |
dc.relation.references | Brinker, A. (2012). Morphogenesis of the Terrarium. The American Biology Teacher, 74(7), 521– 524. https://doi.org/10.1525/abt.2012.74.7.17 | spa |
dc.relation.references | Cabezas, A. (2010). Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells fueled by Root Exudates Doctoral. Microbiology, PhD, 184 | spa |
dc.relation.references | Cabezas, A., Pommerenke, B., Boon, N., & Friedrich, M. W. (2015). Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate- driven microbial fuel cells in rice field soil. Environmental Microbiology Reports, 7(3), 489– 497. https://doi.org/10.1111/1758-2229.12277 | spa |
dc.relation.references | Chicas, S. D., Sivasankar, V., Omine, K., Valladarez, J., & Mylsamy, P. (2018). Plant microbial fuel cell technology: Developments and limitations. En Microbial Fuel Cell Technology for Bioelectricity (pp. 49–65). https://doi.org/10.1007/978-3-319-92904-0_3 | spa |
dc.relation.references | China, F. of. (2000). CANNA Linnaeus. Smithsonian, 510650–510650. | spa |
dc.relation.references | Clark, M. A., Choi, J., & Douglas, M. (2018). Biology 2e. Houston, Texas. Damen, | spa |
dc.relation.references | Damen, T. H. J., van der Burg, W. J., Wiland-Szymańska, J., & Sosef, M. S. M. (2018). Taxonomic novelties in African Dracaena (Dracaenaceae). Blumea: Journal of Plant Taxonomy and Plant Geography, 63(1), 31–53. https://doi.org/10.3767/blumea.2018.63.01.05 | spa |
dc.relation.references | Daniels, F. (1972). Photochemical Effects of Sunlight. Biophysical Journal, 12(7), 723–727. https://doi.org/10.1016/S0006-3495(72)86116-2 | spa |
dc.relation.references | French, C. S. (1952). Photosynthesis and related processes. Physics Today, 5(3), 20–21. https://doi.org/10.1063/1.3067511 | spa |
dc.relation.references | Gómora-Hernández, J. C., Serment-Guerrero, J. H., Carreño-De-león, M. C., & Flores-Alamo, N. (2020). Voltage production in a plant-microbial fuel cell using Agapanthus africanus | Producción de voltaje en una celda de combustible microbiana vegetal utilizando Agapanthus africanus. Revista Mexicana de Ingeniera Quimica, 19(1), 227–237. https://doi.org/10.24275/rmiq/IA542 | spa |
dc.relation.references | Gilani, S. R., Yaseen, A., Zaidi, S. R. A., Zahra, M., & Mahmood, Z. (2016). Photocurrent generation through plant microbial fuel cell by varying electrode materials. Journal of the Chemical Society of Pakistan, 38(1), 17–27. | spa |
dc.relation.references | Gul, M. M., & Ahmad, K. S. (2019). Biosensors and Bioelectronics Bioelectrochemical systems : Sustainable bio-energy powerhouses. (August). | spa |
dc.relation.references | Gulamhussein, M., & Randall, D. G. (2020). Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, https://doi.org/10.1016/j.jwpe.2020.101653 38. | spa |
dc.relation.references | Habibul, N., Hu, Y., Wang, Y. K., Chen, W., Yu, H. Q., & Sheng, G. P. (2016). Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science and Technology, 50(7), 3882–3889. https://doi.org/10.1021/acs.est.5b06376 | spa |
dc.relation.references | Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/j.biortech.2009.12.124 | spa |
dc.relation.references | Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 104, 417–423. https://doi.org/10.1016/j.biortech.2011.11.005 | spa |
dc.relation.references | Helder, Marjolein. (2012). Design criteria for the Plant-Microbial Fuel Cell Electricity generation with living plants – from lab to application. Recuperado de https://www.plant- e.com/en/informatie/ | spa |
dc.relation.references | Helder, Marjolein, Strik, D. P. B. T. B., Timmers, R. A., Raes, S. M. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass and Bioenergy, 51(0), 1–7. https://doi.org/10.1016/j.biombioe.2012.10.011 | spa |
dc.relation.references | Hublikar, L., Ganachari, S. V., & Yaradoddi, J. S. (2019). Green Energy Generation from Microbial Fuel Cells. En L. M. T. Martínez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of Ecomaterials (Vol. 1, pp. 1207–1220). https://doi.org/10.1007/978-3-319- 68255-6_195 | spa |
dc.relation.references | Jung, S. P., & Pandit, S. (2018). Important factors influencing microbial fuel cell performance. En Biomass, Biofuels, Biochemicals: Microbial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and Remediation. https://doi.org/10.1016/B978-0-444-64052- 9.00015-7 | spa |
dc.relation.references | Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2019.05.016 110(September 2018), 402–414 | spa |
dc.relation.references | Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. https://doi.org/10.1007/s00253-008-1410-9 | spa |
dc.relation.references | Klaisongkram, N., & Holasut, K. (2015). Electricity generation of Plant Microbial Fuel Cell (PMFC) using Cyperus Involucratus R. 42(1), 117–124. https://doi.org/10.14456/kkuenj.2015.2 | spa |
dc.relation.references | Kothapalli, A. (2013). Sediment Microbial Fuel Cell as Sustainable Power Resource. UM Digital Commons, (December), 1–50. | spa |
dc.relation.references | Kumar, S. S., Kumar, V., Kumar, R., Malyan, S. K., & Pugazhendhi, A. (2019). Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 255(February), 115682. https://doi.org/10.1016/j.fuel.2019.115682 | spa |
dc.relation.references | Kwak, J. Il, & An, Y. J. (2016). The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environmental Research, 151, 368– 382. https://doi.org/10.1016/j.envres.2016.08.005 | spa |
dc.relation.references | Liu, B., Ji, M., & Zhai, H. (2018). Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations. Chemosphere, 209, 739–747. https://doi.org/10.1016/j.chemosphere.2018.06.122 | spa |
dc.relation.references | Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016 | spa |
dc.relation.references | Long, S. P. (1999). Environmental Responses. C4 Plant Biology, 215–249. https://doi.org/10.1016/b978-012614440-6/50008-2 | spa |
dc.relation.references | Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. https://doi.org/10.1016/j.biortech.2015.05.098 | spa |
dc.relation.references | Md Khudzari, J., Kurian, J., Gariépy, Y., Tartakovsky, B., & Raghavan, G. S. V. (2018). Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass and Bioenergy, 109(December 2017), 1–9. https://doi.org/10.1016/j.biombioe.2017.12.013 | spa |
dc.relation.references | Moqsud, M. A., Gazali, T. A., Omine, K., & Nakata, Y. (2017). Green electricity by water plants in organic soil and marine sediment through microbial fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(2), 160–165. https://doi.org/10.1080/15567036.2016.1159263 | spa |
dc.relation.references | Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76(March), 81–89. https://doi.org/10.1016/j.rser.2017.03.064 | spa |
dc.relation.references | Nurture Nature Center. Terrarium Habitats. | spa |
dc.relation.references | Pamintuan, K. R. S., Calma, M. A. L., Feliciano, K. A. D., & Lariba, K. J. P. D. (2020). Potential of Bioelectricity Generation in Plant-Microbial Fuel Cells Growing House Plants. IOP Conference Series: Earth and Environmental Science, 505(1). https://doi.org/10.1088/1755- 1315/505/1/012043 | spa |
dc.relation.references | Pamintuan, K. R. S., Clomera, J. A. A., Garcia, K. V., Ravara, G. R., & Salamat, E. J. G. (2018). Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes). IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012054 | spa |
dc.relation.references | Regmi, R., Nitisoravut, R., Charoenroongtavee, S., Yimkhaophong, W., & Phanthurat, O. (2018). Earthen Pot-Plant Microbial Fuel Cell Powered by Vetiver for Bioelectricity Production and Wastwater Treatment. 江苏高教, 2(April 2017), 6–11. | spa |
dc.relation.references | Salinas, L. F. C., Ochoa, G. V., & Cardenas, Y. E. (2018). A scientometric analysis of the investigation of biomass gasification environmental impacts from 2001 to 2017. International Journal of Energy Economics and Policy, 8(5), 223–229. | spa |
dc.relation.references | Sarma, P. J., & Mohanty, K. (2018). Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. Journal of Bioscience and Bioengineering, 126(3), 404– 410. https://doi.org/10.1016/j.jbiosc.2018.03.009 | spa |
dc.relation.references | Sarma, P. J., & Mohanty, K. (2019). An Insight into Plant Microbial Fuel Cells. Bioelectrochemical Interface Engineering, 137–148. https://doi.org/10.1002/9781119611103.ch8 | spa |
dc.relation.references | Sivasankar, V., Mylsamy, P., & Omine, K. (2018). Microbial fuel cell technology for bioelectricity. Microbial Fuel Cell Technology for Bioelectricity, 1–311. https://doi.org/10.1007/978-3-319-92904-0 | spa |
dc.relation.references | Sophia, A. C., & Sreeja, S. (2017). Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments, 21, 59–66. https://doi.org/10.1016/j.seta.2017.05.001 | spa |
dc.relation.references | Strik, D. P. B. T. B., Hamelers (Bert), H. V. M., Snel, J. F. H., & Buisman, C. J. N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876. https://doi.org/10.1002/er.1397 | spa |
dc.relation.references | Strik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29(1), 41–49. https://doi.org/10.1016/j.tibtech.2010.10.001 | spa |
dc.relation.references | Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology and Biochemistry, 74(6), 1271–1273. https://doi.org/10.1271/bbb.90852 | spa |
dc.relation.references | Tamura, M. N., Smith, W. W., Hooker, J. D., & Smith, W. W. (2000). 38. CHLOROPHYTUM Ker Gawler, Bot. Mag. 27: t. 1071. 1807. 3–5. | spa |
dc.relation.references | Tapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2017). Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecological Engineering, 108(November 2016), 203–210. https://doi.org/10.1016/j.ecoleng.2017.08.017 | spa |
dc.relation.references | Timmers, R. A., Strik, D. P. B. T. B., Arampatzoglou, C., Buisman, C. J. N., & Hamelers, H. V. M. (2012). Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresource Technology, 108, 60–67. https://doi.org/10.1016/j.biortech.2011.10.088 | spa |
dc.relation.references | Timmers, Ruud A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., Schulz, S., Schloter, M., … Buisman, C. (2012). Microbial community structure elucidates performance of glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 94(2), 537–548. https://doi.org/10.1007/s00253-012-3894-6 | spa |
dc.relation.references | Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Long- term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 86(3), 973–981. https://doi.org/10.1007/s00253-010-2440-7 | spa |
dc.relation.references | Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 51, 60–67. https://doi.org/10.1016/j.biombioe.2013.01.002 | spa |
dc.relation.references | Tou, I., Azri, Y. M., Sadi, M., Lounici, H., & Kebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 947–959. https://doi.org/10.1080/15435075.2019.1650049 | spa |
dc.relation.references | Venkata Mohan, S., Mohanakrishna, G., & Chiranjeevi, P. (2011). Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 102(14), 7036– 7042. https://doi.org/10.1016/j.biortech.2011.04.033 | spa |
dc.relation.references | Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001 | spa |
dc.relation.references | Wang, Y., Wang, J., Song, X., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697–702. https://doi.org/10.1016/j.biortech.2016.09.116 | spa |
dc.relation.references | Wetser, K., Dieleman, K., Buisman, C., & Strik, D. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649. https://doi.org/10.1016/j.apenergy.2016.10.122 | spa |
dc.relation.references | Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543–550. https://doi.org/10.1016/j.biombioe.2015.11.006 | spa |
dc.relation.references | Wetser, Koen. (2016). Electricity from wetlands Technology - Technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode. | spa |
dc.relation.references | Wetser, Koen, Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 137, 151–157. https://doi.org/10.1016/j.apenergy.2014.10.006 | spa |
dc.relation.references | Widharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2020). Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403 | spa |
dc.relation.references | Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007 | spa |
dc.relation.references | Yoon, T. H., Song, H. J., Jung, W. Y., Kim, J. E., Kim, K. J., Kim, H. H., … Kim, H. J. (2018). Monitoring Plant Health Using a Plant Microbial Fuel Cell. Bulletin of the Korean Chemical Society, 39(10), 1193–1197. https://doi.org/10.1002/bkcs.11575 | spa |
dc.relation.references | Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials. Chemical Engineering Journal, 229, 364–370. https://doi.org/10.1016/j.cej.2013.06.023 | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Microcosms | spa |
dc.subject.keyword | Terrarium | spa |
dc.subject.keyword | Plant microbial fuel cell | spa |
dc.subject.keyword | Sustainable energy | spa |
dc.subject.keyword | Photosyntesis | spa |
dc.subject.keyword | Biotechnology | spa |
dc.subject.lemb | Bioquímica | spa |
dc.subject.lemb | Conversión de energía | spa |
dc.subject.lemb | Energía biomásica | spa |
dc.subject.lemb | Agricultura y energía | spa |
dc.subject.lemb | Microorganismos biotecnológicos | spa |
dc.subject.proposal | Microcosmos | spa |
dc.subject.proposal | Terrario | spa |
dc.subject.proposal | Celdas de combustible microbianas en plantas (CCM-P) | spa |
dc.subject.proposal | Energía sostenible | spa |
dc.subject.proposal | Fotosíntesis | spa |
dc.subject.proposal | Biotecnología | spa |
dc.title | Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 4 de 4
Cargando...
- Nombre:
- 2021SolognierSallyslain.pdf
- Tamaño:
- 19.02 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2021SolognierSallyslain1.pdf
- Tamaño:
- 151.46 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Aprobación de facultad

- Nombre:
- 2021SolognierSallyslain2.pdf
- Tamaño:
- 235.17 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización de publicación
Cargando...
- Nombre:
- 2021SolognierSallyslain3.pdf
- Tamaño:
- 12.93 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Apéndice
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: