Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo

dc.contributor.advisorCándela Soto, Angélica Maríaspa
dc.contributor.authorSolognier Balcacer, Sallyslain Gisleyspa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2021-02-15T15:02:41Zspa
dc.date.available2021-02-15T15:02:41Zspa
dc.date.issued2021-02-02spa
dc.descriptionAnte la constante demanda de energía eléctrica, diversas tecnologías son estudiadas para así disminuir la dependencia a las energías convencionales que han llevado a un punto de quiebre las condiciones del medio ambiente. De esta forma, dentro de las biotecnologías recientes se encuentran las celdas de combustible microbianas aplicadas a plantas, la cual será el pilar de esta investigación. Así mismo, se busca realizar un estudio cienciométrico con la base de datos de Scopus, que permita la comparación de los documentos enfocados en la investigación respecto a la producción de energía eléctrica limpia a partir de celdas de combustible microbianas en plantas (CCM-P) con el fin de analizar los factores que principalmente abarcan el funcionamiento correcto de una CCMP y estudiar la posibilidad de implementar las CCMs en plantas aisladas dentro de un microcosmos cerrado, es decir, un terrario. Esta investigación busca plantear un prototipo ideal basándose en los resultados, previamente comparados, de diversos autores; el análisis prospecta posibles escenarios en la implementación de la biotecnología autosostenible.spa
dc.description.abstractIn the face of the constant demand for electrical energy, various technologies are studied to reduce dependence on conventional energies, which have led to a breaking point in environmental conditions. Thus, recent biotechnologies include microbial fuel cells applied to plants, which will be the mainstay of this research. Likewise, the aim is to carry out a scientometric study with the Scopus database, which allows the comparison of documents focused on research regarding the production of clean electrical energy from microbial fuel cells in plants (P-MFC) to analyze the factors that mainly encompass the correct functioning of a P-MFC and study the possibility of implementing the MFC in isolated plants within a closed microcosm, in other words, terrarium. This research seeks to propose an ideal prototype based on the previously compared results of various authors; the analysis prospects possible scenarios in the implementation of self-sustaining biotechnology.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniera Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSolognier Balcacer, S. G. (2020). Estudio de caso : Energía a partir de plantas vivas Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo. Universidad Santo Tomás.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/32130
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.relation.referencesArends, J. B. A., Blondeel, E., Tennison, S. R., Boon, N., & Verstraete, W. (2012). Suitability of granular carbon as an anode material for sediment microbial fuel cells. Journal of Soils and Sediments, 12(7), 1197–1206. https://doi.org/10.1007/s11368-012-0537-6spa
dc.relation.referencesArends, J. B. A., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., … Boon, N. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 98(7), 3205–3217. https://doi.org/10.1007/s00253-013-5328-5spa
dc.relation.referencesAzri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487spa
dc.relation.referencesBagshaw Ward, N. (1899). Library of The New York Botanical Garden (Second). London.spa
dc.relation.referencesBrinker, A. (2012). Morphogenesis of the Terrarium. The American Biology Teacher, 74(7), 521– 524. https://doi.org/10.1525/abt.2012.74.7.17spa
dc.relation.referencesCabezas, A. (2010). Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells fueled by Root Exudates Doctoral. Microbiology, PhD, 184spa
dc.relation.referencesCabezas, A., Pommerenke, B., Boon, N., & Friedrich, M. W. (2015). Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate- driven microbial fuel cells in rice field soil. Environmental Microbiology Reports, 7(3), 489– 497. https://doi.org/10.1111/1758-2229.12277spa
dc.relation.referencesChicas, S. D., Sivasankar, V., Omine, K., Valladarez, J., & Mylsamy, P. (2018). Plant microbial fuel cell technology: Developments and limitations. En Microbial Fuel Cell Technology for Bioelectricity (pp. 49–65). https://doi.org/10.1007/978-3-319-92904-0_3spa
dc.relation.referencesChina, F. of. (2000). CANNA Linnaeus. Smithsonian, 510650–510650.spa
dc.relation.referencesClark, M. A., Choi, J., & Douglas, M. (2018). Biology 2e. Houston, Texas. Damen,spa
dc.relation.referencesDamen, T. H. J., van der Burg, W. J., Wiland-Szymańska, J., & Sosef, M. S. M. (2018). Taxonomic novelties in African Dracaena (Dracaenaceae). Blumea: Journal of Plant Taxonomy and Plant Geography, 63(1), 31–53. https://doi.org/10.3767/blumea.2018.63.01.05spa
dc.relation.referencesDaniels, F. (1972). Photochemical Effects of Sunlight. Biophysical Journal, 12(7), 723–727. https://doi.org/10.1016/S0006-3495(72)86116-2spa
dc.relation.referencesFrench, C. S. (1952). Photosynthesis and related processes. Physics Today, 5(3), 20–21. https://doi.org/10.1063/1.3067511spa
dc.relation.referencesGómora-Hernández, J. C., Serment-Guerrero, J. H., Carreño-De-león, M. C., & Flores-Alamo, N. (2020). Voltage production in a plant-microbial fuel cell using Agapanthus africanus | Producción de voltaje en una celda de combustible microbiana vegetal utilizando Agapanthus africanus. Revista Mexicana de Ingeniera Quimica, 19(1), 227–237. https://doi.org/10.24275/rmiq/IA542spa
dc.relation.referencesGilani, S. R., Yaseen, A., Zaidi, S. R. A., Zahra, M., & Mahmood, Z. (2016). Photocurrent generation through plant microbial fuel cell by varying electrode materials. Journal of the Chemical Society of Pakistan, 38(1), 17–27.spa
dc.relation.referencesGul, M. M., & Ahmad, K. S. (2019). Biosensors and Bioelectronics Bioelectrochemical systems : Sustainable bio-energy powerhouses. (August).spa
dc.relation.referencesGulamhussein, M., & Randall, D. G. (2020). Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, https://doi.org/10.1016/j.jwpe.2020.101653 38.spa
dc.relation.referencesHabibul, N., Hu, Y., Wang, Y. K., Chen, W., Yu, H. Q., & Sheng, G. P. (2016). Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science and Technology, 50(7), 3882–3889. https://doi.org/10.1021/acs.est.5b06376spa
dc.relation.referencesHelder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/j.biortech.2009.12.124spa
dc.relation.referencesHelder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 104, 417–423. https://doi.org/10.1016/j.biortech.2011.11.005spa
dc.relation.referencesHelder, Marjolein. (2012). Design criteria for the Plant-Microbial Fuel Cell Electricity generation with living plants – from lab to application. Recuperado de https://www.plant- e.com/en/informatie/spa
dc.relation.referencesHelder, Marjolein, Strik, D. P. B. T. B., Timmers, R. A., Raes, S. M. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass and Bioenergy, 51(0), 1–7. https://doi.org/10.1016/j.biombioe.2012.10.011spa
dc.relation.referencesHublikar, L., Ganachari, S. V., & Yaradoddi, J. S. (2019). Green Energy Generation from Microbial Fuel Cells. En L. M. T. Martínez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of Ecomaterials (Vol. 1, pp. 1207–1220). https://doi.org/10.1007/978-3-319- 68255-6_195spa
dc.relation.referencesJung, S. P., & Pandit, S. (2018). Important factors influencing microbial fuel cell performance. En Biomass, Biofuels, Biochemicals: Microbial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and Remediation. https://doi.org/10.1016/B978-0-444-64052- 9.00015-7spa
dc.relation.referencesKabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2019.05.016 110(September 2018), 402–414spa
dc.relation.referencesKaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. https://doi.org/10.1007/s00253-008-1410-9spa
dc.relation.referencesKlaisongkram, N., & Holasut, K. (2015). Electricity generation of Plant Microbial Fuel Cell (PMFC) using Cyperus Involucratus R. 42(1), 117–124. https://doi.org/10.14456/kkuenj.2015.2spa
dc.relation.referencesKothapalli, A. (2013). Sediment Microbial Fuel Cell as Sustainable Power Resource. UM Digital Commons, (December), 1–50.spa
dc.relation.referencesKumar, S. S., Kumar, V., Kumar, R., Malyan, S. K., & Pugazhendhi, A. (2019). Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 255(February), 115682. https://doi.org/10.1016/j.fuel.2019.115682spa
dc.relation.referencesKwak, J. Il, & An, Y. J. (2016). The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environmental Research, 151, 368– 382. https://doi.org/10.1016/j.envres.2016.08.005spa
dc.relation.referencesLiu, B., Ji, M., & Zhai, H. (2018). Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations. Chemosphere, 209, 739–747. https://doi.org/10.1016/j.chemosphere.2018.06.122spa
dc.relation.referencesLogan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016spa
dc.relation.referencesLong, S. P. (1999). Environmental Responses. C4 Plant Biology, 215–249. https://doi.org/10.1016/b978-012614440-6/50008-2spa
dc.relation.referencesLu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. https://doi.org/10.1016/j.biortech.2015.05.098spa
dc.relation.referencesMd Khudzari, J., Kurian, J., Gariépy, Y., Tartakovsky, B., & Raghavan, G. S. V. (2018). Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass and Bioenergy, 109(December 2017), 1–9. https://doi.org/10.1016/j.biombioe.2017.12.013spa
dc.relation.referencesMoqsud, M. A., Gazali, T. A., Omine, K., & Nakata, Y. (2017). Green electricity by water plants in organic soil and marine sediment through microbial fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(2), 160–165. https://doi.org/10.1080/15567036.2016.1159263spa
dc.relation.referencesNitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76(March), 81–89. https://doi.org/10.1016/j.rser.2017.03.064spa
dc.relation.referencesNurture Nature Center. Terrarium Habitats.spa
dc.relation.referencesPamintuan, K. R. S., Calma, M. A. L., Feliciano, K. A. D., & Lariba, K. J. P. D. (2020). Potential of Bioelectricity Generation in Plant-Microbial Fuel Cells Growing House Plants. IOP Conference Series: Earth and Environmental Science, 505(1). https://doi.org/10.1088/1755- 1315/505/1/012043spa
dc.relation.referencesPamintuan, K. R. S., Clomera, J. A. A., Garcia, K. V., Ravara, G. R., & Salamat, E. J. G. (2018). Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes). IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012054spa
dc.relation.referencesRegmi, R., Nitisoravut, R., Charoenroongtavee, S., Yimkhaophong, W., & Phanthurat, O. (2018). Earthen Pot-Plant Microbial Fuel Cell Powered by Vetiver for Bioelectricity Production and Wastwater Treatment. 江苏高教, 2(April 2017), 6–11.spa
dc.relation.referencesSalinas, L. F. C., Ochoa, G. V., & Cardenas, Y. E. (2018). A scientometric analysis of the investigation of biomass gasification environmental impacts from 2001 to 2017. International Journal of Energy Economics and Policy, 8(5), 223–229.spa
dc.relation.referencesSarma, P. J., & Mohanty, K. (2018). Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. Journal of Bioscience and Bioengineering, 126(3), 404– 410. https://doi.org/10.1016/j.jbiosc.2018.03.009spa
dc.relation.referencesSarma, P. J., & Mohanty, K. (2019). An Insight into Plant Microbial Fuel Cells. Bioelectrochemical Interface Engineering, 137–148. https://doi.org/10.1002/9781119611103.ch8spa
dc.relation.referencesSivasankar, V., Mylsamy, P., & Omine, K. (2018). Microbial fuel cell technology for bioelectricity. Microbial Fuel Cell Technology for Bioelectricity, 1–311. https://doi.org/10.1007/978-3-319-92904-0spa
dc.relation.referencesSophia, A. C., & Sreeja, S. (2017). Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments, 21, 59–66. https://doi.org/10.1016/j.seta.2017.05.001spa
dc.relation.referencesStrik, D. P. B. T. B., Hamelers (Bert), H. V. M., Snel, J. F. H., & Buisman, C. J. N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876. https://doi.org/10.1002/er.1397spa
dc.relation.referencesStrik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29(1), 41–49. https://doi.org/10.1016/j.tibtech.2010.10.001spa
dc.relation.referencesTakanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology and Biochemistry, 74(6), 1271–1273. https://doi.org/10.1271/bbb.90852spa
dc.relation.referencesTamura, M. N., Smith, W. W., Hooker, J. D., & Smith, W. W. (2000). 38. CHLOROPHYTUM Ker Gawler, Bot. Mag. 27: t. 1071. 1807. 3–5.spa
dc.relation.referencesTapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2017). Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecological Engineering, 108(November 2016), 203–210. https://doi.org/10.1016/j.ecoleng.2017.08.017spa
dc.relation.referencesTimmers, R. A., Strik, D. P. B. T. B., Arampatzoglou, C., Buisman, C. J. N., & Hamelers, H. V. M. (2012). Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresource Technology, 108, 60–67. https://doi.org/10.1016/j.biortech.2011.10.088spa
dc.relation.referencesTimmers, Ruud A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., Schulz, S., Schloter, M., … Buisman, C. (2012). Microbial community structure elucidates performance of glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 94(2), 537–548. https://doi.org/10.1007/s00253-012-3894-6spa
dc.relation.referencesTimmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Long- term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 86(3), 973–981. https://doi.org/10.1007/s00253-010-2440-7spa
dc.relation.referencesTimmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 51, 60–67. https://doi.org/10.1016/j.biombioe.2013.01.002spa
dc.relation.referencesTou, I., Azri, Y. M., Sadi, M., Lounici, H., & Kebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 947–959. https://doi.org/10.1080/15435075.2019.1650049spa
dc.relation.referencesVenkata Mohan, S., Mohanakrishna, G., & Chiranjeevi, P. (2011). Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 102(14), 7036– 7042. https://doi.org/10.1016/j.biortech.2011.04.033spa
dc.relation.referencesWang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001spa
dc.relation.referencesWang, Y., Wang, J., Song, X., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697–702. https://doi.org/10.1016/j.biortech.2016.09.116spa
dc.relation.referencesWetser, K., Dieleman, K., Buisman, C., & Strik, D. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649. https://doi.org/10.1016/j.apenergy.2016.10.122spa
dc.relation.referencesWetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543–550. https://doi.org/10.1016/j.biombioe.2015.11.006spa
dc.relation.referencesWetser, Koen. (2016). Electricity from wetlands Technology - Technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode.spa
dc.relation.referencesWetser, Koen, Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 137, 151–157. https://doi.org/10.1016/j.apenergy.2014.10.006spa
dc.relation.referencesWidharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2020). Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403spa
dc.relation.referencesYasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007spa
dc.relation.referencesYoon, T. H., Song, H. J., Jung, W. Y., Kim, J. E., Kim, K. J., Kim, H. H., … Kim, H. J. (2018). Monitoring Plant Health Using a Plant Microbial Fuel Cell. Bulletin of the Korean Chemical Society, 39(10), 1193–1197. https://doi.org/10.1002/bkcs.11575spa
dc.relation.referencesZhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials. Chemical Engineering Journal, 229, 364–370. https://doi.org/10.1016/j.cej.2013.06.023spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordMicrocosmsspa
dc.subject.keywordTerrariumspa
dc.subject.keywordPlant microbial fuel cellspa
dc.subject.keywordSustainable energyspa
dc.subject.keywordPhotosyntesisspa
dc.subject.keywordBiotechnologyspa
dc.subject.lembBioquímicaspa
dc.subject.lembConversión de energíaspa
dc.subject.lembEnergía biomásicaspa
dc.subject.lembAgricultura y energíaspa
dc.subject.lembMicroorganismos biotecnológicosspa
dc.subject.proposalMicrocosmosspa
dc.subject.proposalTerrariospa
dc.subject.proposalCeldas de combustible microbianas en plantas (CCM-P)spa
dc.subject.proposalEnergía sosteniblespa
dc.subject.proposalFotosíntesisspa
dc.subject.proposalBiotecnologíaspa
dc.titleEstudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipospa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2021SolognierSallyslain.pdf
Tamaño:
19.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2021SolognierSallyslain1.pdf
Tamaño:
151.46 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación de facultad
Thumbnail USTA
Nombre:
2021SolognierSallyslain2.pdf
Tamaño:
235.17 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización de publicación
Cargando...
Miniatura
Nombre:
2021SolognierSallyslain3.pdf
Tamaño:
12.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Apéndice

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: