Diseño de un modelo in vitro de células epiteliales primarias gingivales humanas para evaluar infectividad de Helicobacter pylori (ATCC 43504)

dc.contributor.advisorBautista Amorocho, Henryspa
dc.contributor.authorMacías Gómez, Fabiospa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2019-10-02T16:55:38Zspa
dc.date.available2019-10-02T16:55:38Zspa
dc.date.issued2019-10-02spa
dc.descriptionAntecedentes: La evidencia sobre patologías bucales asociadas a Helicobacter pylori es controversial, especialmente porque no hay certeza sobre la capacidad infectante de la bacteria en tejido oral. Por lo tanto, es importante evaluar metodologías para establecer la capacidad de adhesión de H. pylori a la célula hospedera en el proceso de patogénesis. Objetivo: Evaluar la capacidad infectante de H. pylori (ATCC 43504) en células epiteliales primarias gingivales humanas. Metodología: Biopsias de encías humanas de donantes sanos se disgregaron mecánicamente y se digirieron con enzimas proteolíticas y con antioxidantes. El sedimento celular se suspendió en medio Williams suplementado con antimicrobianos, suero bovino fetal y factores de crecimiento. Las células se cultivaron por dos semanas en placas de 12 pozos a 37°C y atmósfera CO2 al 10%. El fenotipo epitelial se confirmó por coloración de Hematoxilina & Eosina (H&E) e inmunohistoquímica para el antígeno epitelial de membrana (AEM) y coctel de citoqueratinas AE1/AE3. La evaluación de la capacidad de infección se realizó por inmunofluorescencia indirecta (IFI) con anticuerpo anti H. pylori. Se utilizó una multiplicidad de infección MOI (bacteria: célula) de 100 en monocapas con 70% de confluencia; como controles positivo y negativo de la infección se utilizaron líneas de células tumorales gástricas (AGS) y células embrionarias de riñón (293TN) de origen humano, respectivamente. Resultados y conclusiones: Se aislaron células gingivales viables y proliferantes, con confluencia inicial del 20% a las 72 horas y un 100% a los diez días de incubación. La coloración H&E evidenció la morfología epitelial de células planas de forma cilíndrica y núcleo prominente; y se confirmó el fenotipo de origen epitelial con AEM y AE1/AE3 (positividad de 80% y 60%, respectivamente). La IFI demostró ausencia de H. pylori en las células gingivales primarias con fluorescencia 0.4 ± 0.5%, mientras que los controles positivos y negativos presentaron 99.4 ± 0.9 % y 19.2 ± 1.1 % de positividad, respectivamente. Los resultados obtenidos sugieren que la cepa ATCC 43504 de H. pylori no tiene capacidad de adhesión a células epiteliales primarias gingivales humanas. Por consiguiente, se puede sugerir que la cepa evaluada de H. pylori participaría como microorganismo comensal transitorio en la cavidad bucal.spa
dc.description.abstractBackground: Evidence on oral pathologies associated with Helicobacter pylori is controversial, especially because there is no certainty about the infecting capacity of the bacteria in oral tissue. Therefore, it is important to evaluate methodologies to establish the adhesion capacity of H. pylori to the host cell in the process of pathogenesis. Objective: To evaluate infectious capacity of H. pylori (ATCC 43504) to infect on Human Primary Gingival Epithelial Cells. Methodology: Human gingival biopsies from healthy donors were mechanically disrupted and digested with proteolytic enzymes and antioxidants. The cell pellet was suspended in Williams’ medium supplemented with antimicrobials, fetal bovine serum and growth factors. Cells were cultured for two weeks in 12-well plates at 37°C and 10% CO2 atmosphere. The epithelial phenotype was confirmed by Hematoxylin & Eosin staining (H&E) and immunohistochemistry for membrane epithelial membrane antigen (EMA) and cytokeratin cocktail AE1/AE3. The evaluation of the infectious capacity was carried out by indirect immunofluorescence (IFI) with anti-H.pylori antibody. A multiplicity of infection MOI (bacteria: cell) of 100 in monolayers with 70% confluence was used; As positive and negative controls of the infection, gastric tumor cell lines (AGS) and kidney embryonic cells (293TN) of human origin were used, respectively. Results and conclusions: Viable and proliferating gingival cells were isolated, with initial confluence of 20% at 72 hours and 100% at ten days of incubation. H&E staining evidenced the epithelial morphology of flat cells with a cylindrical shape and a prominent nucleus; and the phenotype of epithelial origin was confirmed with EMA and AE1/AE3 (positivity of 80% and 60%, respectively). IFI demonstrated absence of H. pylori in the primary gingival cells with fluorescence 0.4 ± 0.5%, while the positive and negative controls showed 99.4 ± 0.9% and 19.2 ± 1.1% positivity, respectively. The results obtained suggest that strain ATCC 43504 of H. pylori does not have the capacity of adhesion to human primary gingival epithelial cells. Therefore, it can be suggested that the evaluated strain of H. pylori would participate as a transient commensal microorganism in the oral cavity.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Odontologíaspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMacías Gómez, F. (2019). Diseño de un modelo in vitro de células epiteliales primarias gingivales humanas para evaluar infectividad de Helicobacter pylori (ATCC 43504) [Tesis de grado]. Universidad Santo Tomás, Bucaramanga, Colombiaspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/18979
dc.publisher.programMaestría en Odontologíaspa
dc.relation.references1. Eusebi, L., Zagari, R. & Bazzoli, F. (2014). Epidemiology of Helicobacter pylori infection. Helicobacter, (19 Suppl 1), 1-5. SSN 1523-5378 doi: 10.1111/hel.12165spa
dc.relation.references2. Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, et al., (2017) Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis.spa
dc.relation.references3. Damla Aksit Bicak, Serap Akyuz (2018). Oral Signs of Helicobacter Pylori- Review of Clinical Outcomes. Biomed Sci&Tech Res 8(2)-. BJSTR MS.ID.001635. DOI: 10.26717/ BJSTR.2018.08.001635.spa
dc.relation.references4. Yee JKC (2017). Are the view of Helicobacter pylori colonized in the oral cavity an illusion?. Experimental & Molecular Medicine. 49, e397; doi:10.1038/emm.2017.225spa
dc.relation.references5. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Schistosomes, Liver Flukes and Helicobacter pylori. Lyon (FR): International Agency for Research on Cancer; 1994. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 61.) Recuperado de: https://www.ncbi.nlm.nih.gov/books/NBK487782/spa
dc.relation.references6. Crow SE. (2019). Helicobacter pylori Infection. N Engl J Med. 380:1158-65. DOI: 10.1056/NEJMcp1710945spa
dc.relation.references7. Tongtawee T, Wattanawongdon W, Simawaranon T. (2019). Effects of periodontal therapy on eradication and recurrence of Helicobacter pylori infection after successful treatment. Journal of International Medical Research. Vol. 47(2) 875–883spa
dc.relation.references8. Adler I, Muiño A, Aguas S, Harada L, Diaz M, Lence A, et al. (2014) Helicobacter pylori and oral pathology: Relationship with the gastric infection. World Journal of Gastroenterology : WJG.;20(29):9922-35spa
dc.relation.references9. Basic A, Enerbäcka H, Waldenströma S, Östgärda E, Suksuartb N, Dahlena G (2018). Presence of Helicobacter pylori and Campylobacter ureolyticus in the oral cavity of a Northern Thailand population that experiences stomach pain. Journal of oral microbiology. VOL. 10, 1527655.spa
dc.relation.references10. Dye BA , Kruszon-Moran D, McQuillan G. (2002) The relationship between periodontal disease attributes and Helicobacter pylori infection among adults in the United States. Am J Public Health. 92 1809-1815spa
dc.relation.references11. Bharath TS, Reddy MS, Dhanapal R, Raj Kumar NG, Neeladri Raju P, Saraswathi T. (2014).Molecular detection and corelation of Helicobacter pylori in dental plaque and gastric biopsies of dyspeptic patients. Journal of oral and maxillofacial pathology : JOMFP.18(1):19-24spa
dc.relation.references12. Yee JKC. (2016) Helicobacter pylori colonization of the oral cavity: A milestone discovery. World Journal of Gastroenterology. 22(2):641-8spa
dc.relation.references13. Krzyżek, P. & Gościniak, G. (2018). Oral Helicobacter pylori: Interactions with host and microbial flora of the oral cavity. Dent Med Probl. 55(1), 75-82. doi: 10.17219/dmp/81259.spa
dc.relation.references14. Roesler, B., Rabelo, E. & Zeitune, J. (2014). Virulence Factors of Helicobacter pylori: A Review. Clinical Medicine Insights: Gastroenterology, 7, 9–17. doi: 10.4137/CGast.S13760spa
dc.relation.references15. Oleastro M, Ménard A. (2013) The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology. 2:1110 –1134.spa
dc.relation.references16. Hu, Z., Zhang, Y., Li, Z., Yu, Y., Kang, W., Han, Y., … Sun, Y. (2016). Effect of Helicobacter pylori infection on chronic periodontitis by the change of microecology and inflammation. Oncotarget, 7(41), 66700–66712. doi:10.18632/oncotarget.11449spa
dc.relation.references17. Sheu BS, Cheng HC, Yang YJ, Yang HP, Wu JJ. (2007): The presence of dental disease can be a risk factor for recurrent Helicobacter pylori infection after eradication therapy: a 3year follow-up. Endoscopy. 39: 942–947spa
dc.relation.references18. Zheng P, Zhou W. Relation between periodontitis and helicobacter pylori infection. Int J Clin Exp Med. 2015 Sep 15;8(9):16741-4. eCollection 2015.spa
dc.relation.references19. Rasmussen LT, Labio RWd, Gatti LL, Silva LCd, Queiroz VFd, Smith MdAC, et al. Helicobacter pylori detection in gastric biopsies, saliva and dental plaque of Brazilian dyspeptic patients. Memorias do Instituto Oswaldo Cruz. 2010;105:326-30.spa
dc.relation.references20. Sepúlveda E, Moreno J, Spencer ML, Quilodrán S, Brethauer U, Briceño C, et al. Comparación de Helicobacter pylori en cavidad oral y mucosa gástrica de acuerdo a genotipo de virulencia (cagA y vacAm 1). Revista chilena de infectología. 2012;29:278-83.spa
dc.relation.references21. Castro-Muñoz LJ, González-Díaz CA, Muñoz-Escobar A, Tovar-Ayona BJ, Aguilar-Anguiano LM, Vargas-Olmos R, et al. Prevalence of Helicobacter pylori from the oral cavity of Mexican asymptomatic children under 5 years of age through PCR. Archives of oral biology. 2017;73:55-9.spa
dc.relation.references22. Roesler, B., Rabelo, E. & Zeitune, J. (2014). Virulence Factors of Helicobacter pylori: A Review. Clinical Medicine Insights: Gastroenterology, 7, 9–17. doi: 10.4137/CGast.S13760spa
dc.relation.references23. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., et al. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295(5555), 683-686. doi: 10.1126/science.1067147spa
dc.relation.references24. Backert, S. & Selbach, M. (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol, 10(8), 1573-1581. doi: 10.1111/j.1462-5822.2008.01156.spa
dc.relation.references25. Willhite, D. & Blanke, S. (2004). Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol, 6(2), 143-154. doi: 10.1046/j.1462-5822.2003.00347.xspa
dc.relation.references26. Cover, T. (2016). Helicobacter pylori Diversity and Gastric Cancer Risk. MBio, 7(1), e01869-15. doi: 10.1128/mBio.01869-15.spa
dc.relation.references27. Kao, C., Sheu, B. & Wu, J. (2016). Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomedical journal, 39(1), 14-23. doi: 10.1016/j.bj.2015.06.002spa
dc.relation.references28. Ishijima, N., Suzuki, M., Ashida, H., Ichikawa, Y., Kanegae, Y., Saito, T., et al. (2011). BabA-mediated adherence is a potentiator of the helicobacter pylori type IV secretion system activity. The Journal of Biological Chemistry, 286(28), 25256–25264. doi: 10.1074/jbc.M111.233601spa
dc.relation.references29. Luman W (2002) Helicobacter pylori transmission: Is it due to kissing? J R Coll Physicians Edinb 32: 275-279.spa
dc.relation.references30. Keilberg, D. & Ottemann, K. (2016). How Helicobacter pylori senses, targets and interacts with the gastric epithelium. Environ Microbiol, 18(3), 791-806. doi: 10.1111/1462-2920.spa
dc.relation.references31. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. (2000) Comparative genomics of Helicobacter pylori: Analysis of the outer membrane protein families. Infect Immun.;68:4155–4168spa
dc.relation.references32. Oleastro M, Ménard A. (2013) The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology. 2:1110 –1134.spa
dc.relation.references33. Silva DG, Stevens RH, Macedo JMB, et al. (2009) Higher levels of salivary MUC5B and MUC7 in individuals with gastric diseases who harbor Helicobacter pylori. Arch Oral Biol. 54:86–90spa
dc.relation.references34. Correa, P. & Piazuelo, M. (2012). The gastric precancerous cascade. Journal of digestive diseases. 13(1), 2-9. Doi: 10.1111/j.1751-2980.2011.00550.x.spa
dc.relation.references35. Ramis, I., de Moraes, E., Fernandes, M., Mendoza-Sassi, R., Rodrigues, O., Juliano, C., et al. (2012). Evaluation of diagnostic methods for the detection of Helicobacter pylori in gastric biopsy specimens of dyspeptic patients. Brazilian Journal of Microbiology, 43(3), 903–908. doi: 10.1590/S1517-83822012000300008spa
dc.relation.references36. Leite, M. & Figueiredo, C. (2012). A method for short-term culture of human gastric epithelial cells to study the effects of Helicobacter pylori. Methods Mol Biol, 921, 61-68. doi: 10.1007/978-1-62703-005-2_9spa
dc.relation.references37. Ryota Nomura, Yuko Ogaya, Saaya Matayoshi, Yumiko Morita and Kazuhiko Nakano. (2018). Molecular and clinical analyses of Helicobacter pylori colonization in inflamed dental pulp. BMC Oral Health (2018) 18:64spa
dc.relation.references38. Dunne C, Dolan B, Clyne M. (2014]). Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol. 2014 May 21;20(19):5610-24. doi: 10.3748/wjg.v20.i19.5610.spa
dc.relation.references39. Bonsor DA, Sundberg EJ. (2019). Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. Adv Exp Med Biol. 2019 Apr 24. doi: 10.1007/5584_2019_359spa
dc.relation.references40. Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ, Meyer TF. 82014). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. 2016 Feb;65(2):202-13. doi: 10.1136/gutjnl-2014-307949.spa
dc.relation.references41. Oleastro M, Ménard A. The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology. 2013;2:1110–1134.spa
dc.relation.references42. Pachathundikandi SK, Tegtmeyer N,Backert S. (2013). Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4:6, 454–474spa
dc.relation.references43. Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM. Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on highmolecular-weight salivary mucin. Infect Immun. 1998;66:444–447spa
dc.relation.references44. Jönsson D, Ramberg P, Demmer RT, Kebschull M, Dahlén G, Papapanou P. (2011). Gingival tissue transcriptomes in experimental gingivitis. Clin Periodontol. 38(7): 599–611. doi:10.1111/j.1600-051X.2011.01719.x.spa
dc.relation.references45. Rogers AH, Zilm PS, Diaz PI. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbondioxide- depleted environments. Microbiol. 2002;148:467–472.spa
dc.relation.references46. Eftang, L., Esbensen, Y., Tannæs, T., Bukholm, I. & Bukholm, G. (2012). Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. BMC Microbiol, 12(9), doi: 10.1186/1471-2180-12-9spa
dc.relation.references47. Ureporn Kedjarune, Supreya Pongprerachok, Premjit Arpornmaeklong, Kiattisak Ungkusonmongkhon. Culturing primary human gingival epithelial cells: omparison of two isolation techniques. Journal of Cranio-Maxillofacial Surgery (2001) 29, 224±231spa
dc.relation.references48. Shiba H, Venkatesh SG, Gorr SU, Barbieri G, Kurihara H, Kinane DF. Parotid secretory protein is expressed and inducible in human gingival keratinocytes. J Periodontal Res. 2005 Apr;40(2):153-7.spa
dc.relation.references49. Buskermolen JK, Reijnders CMA, Spiekstra SW, et al. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Engineering Part C, Methods. 2016;22(8):781-791. doi:10.1089/ten.tec.2016.0066spa
dc.relation.references50. Angelova Volponi A, Kawasaki M, Sharpe PT. Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering. Journal of Dental Research. 2013;92(4):329-334.spa
dc.relation.references51. Hsueh YJ, Huang SF, Lai JY, Ma SC, Chen HC, Wu SE, Wang TK, Sun CC, Ma KS, Chen JK, Lai CH, Ma DH. Preservation of epithelial progenitor cells from collagenase-digested oral mucosa during ex vivo cultivation. Sci Rep. 2016 Nov 8;6:36266. doi:0.1038/srep36266. PubMed PMID: 27824126; PubMed Centralspa
dc.relation.references52. Ren HJ, Zhang CL, Liu RD, Li N, Li XG, Xue HK, Guo Y, Wang ZQ, Cui J, Ming L: Primary cultures of mouse small intestinal epithelial cells using the dissociating enzyme type I collagenase and hyaluronidase. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 2017, 50(5):e5831.spa
dc.relation.references53. Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON, Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc (2010) 5:702-713spa
dc.relation.references54. Hannan NR, Segeritz CP, Touboul T, Vallier L, Production of hepatocyte-like cells from human pluripotent stem cells.Nat Protoc (2013) 8:430-437spa
dc.relation.references55. Williams GM, Weisburger EK, Weisburger JH: Isolation and long-term cell culture of epithelial-like cells from rat liver. Experimental cell research 1971, 69(1):106-112.spa
dc.relation.references56. Odenbreit, S.; Swoboda, K.; Barwig, I.; Ruhl, S.; Borén, T.; Koletzko, S.; Haas, R. Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect. Immun. 2009, 77, 3782–3790. Biology 2013, 2 1126spa
dc.relation.references57. Oleastro M, Ménard A. The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis. Biology (Basel). 2013 Aug 27;2(3):1110-34. doi:10.3390/biology2031110.spa
dc.relation.references58. Falush, D.; Kraft, C.; Taylor, N.S.; Correa, P.; Fox, J.G.; Achtman, M.; Suerbaum, S. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age. Proc. Natl. Acad. Sci. USA 2001, 98, 15056–15061spa
dc.relation.references59. Suerbaum, S.; Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 2007, 5, 441–452.spa
dc.relation.references60. Muotiala, A.; Helander, I.M.; Pyhala, L.; Kosunen, T.U.; Moran, A.P. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun. 1992, 60, 1714–1716.spa
dc.relation.references61. Monteiro, M.A.; Appelmelk, B.J.; Rasko, D.A.; Moran, A.P.; Hynes, S.O.; MacLean, L.L.; Chan, K.H.; Michael, F.S.; Logan, S.M.; O’Rourke, J.; et al. Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H-pylori Sydney strain, H-pylori P466 carrying sialyl Lewis X, and H-pylori UA915 expressing Lewis B—Classification of H-pylori lipopolysaccharides into glycotype families. Eur. J. Biochem. 2000, 267, 305–320.spa
dc.relation.references62. Edwards, N.J.; Monteiro, M.A.; Faller, G.; Walsh, E.J.; Moran, A.P.; Roberts, I.S.; High, N.J. Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol. Microbiol. 2000, 35, 1530–1539.spa
dc.relation.references63. Osaki, T.; Yamaguchi, H.; Taguchi, H.; Fukuda, M.; Kawakami, H.; Hirano, H.; Watanabe, S.; Takagi, A.; Kamiya, S. Establishment and characterisation of a monoclonal antibody to inhibit adhesion of Helicobacter pylori to gastric epithelial cells. J. Med. Microbiol. 1998, 47, 505–512.spa
dc.relation.references64. Fowler, M.; Thomas, R.J.; Atherton, J.; Roberts, I.S.; High, N.J. Galectin-3 binds to Helicobacter pylori O-antigen: It is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell. Microbiol. 2006, 8, 44–54.spa
dc.relation.references65. Tamai R, Kobayashi-Sakamoto M, Kiyoura Y. Extracellular galectin-1 enhances adhesion to and invasion of oral epithelial cells by Porphyromonas gingivalis. Can J Microbiol. 2018 Jul;64(7):465-471. doi: 10.1139/cjm-2017-0461. Epub 2018spa
dc.relation.references66. Ilver, D.; Arnqvist, A.; Ögren, J.; Frick, I.M.; Kersulyte, D.; Incecik, E.T.; Berg, D.E.; Covacci, A.; Engstrand, L.; Borén, T. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 1998, 279, 373–377.spa
dc.relation.references67. Borén, T.; Falk, P.; Roth, K.A.; Larson, G.; Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993, 262, 1892–1895.spa
dc.relation.references68. Aspholm-Hurtig, M.; Dailide, G.; Lahmann, M.; Kalia, A.; Ilver, D.; Roche, N.; Vikström, S.; Lindén, S.; Bäckström, A.; Lundberg, C.; et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 2004, 305, 519–522.spa
dc.relation.references69. Sakamoto, S.; Watanabe, T.; Tokumaru, T.; Takagi, H.; Nakazato, H.; Lloyd, K.O. Expression of Lewis a, Lewis b Lewis x, Lewis y and sialyl-Lewis x blood group antigens in human gastric carcinoma and in normal gastric tissue. Cancer Res. 1989, 49, 745–752spa
dc.relation.references70. Oleastro, M.; Cordeiro, R.; Ferrand, J.; Nunes, B.; Lehours, P.; Carvalho-Oliveira, I.; Mendes, A.L.; Monteiro, L.; Mégraud, F.; Ménard, A. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J. Infect. Dis. 2008, 198, 1379–1387.spa
dc.relation.references71. Oleastro M, Monteiro L, Lehours P, Mégraud F, Menard A. Identification of markers for Helicobacter pylori strains isolated from children with peptic ulcer disease by suppressive subtractive hybridization, Infect Immun , 2006, vol. 74 (pg. 4064-74)spa
dc.relation.references72. Peck, B.; Ortkamp, M.; Diehl, K.D.; Hundt, E.; Knapp, B. Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucl. Acids Res. 1999, 27, 3325–3333spa
dc.relation.references73. Yamaoka, Y.; Kita, M.; Kodama, T.; Imamura, S.; Ohno, T.; Sawai, N.; Ishimaru, A.; Imanishi, J.; Graham, D.Y. Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. Gastroenterology 2002, 123, 1992–2004.spa
dc.relation.references74. Yamaoka, Y.; Kwon, D.H.; Graham, D.Y. A M(r) 34,000 proinflammatory outer membrane protein (OipA) of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 2000, 97, 111–133.spa
dc.relation.references75. Yamaoka, Y.; Kikuchi, S.; El-Zimaity, H.M.T.; Gutierrez, O.; Osato, M.S.; Graham, D.Y. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 2002, 123, 414–424.spa
dc.relation.references76. Dossumbekova, A.; Prinz, C.; Mages, J.; Lang, R.; Kusters, J.G.; van Vliet, A.H.; Reindl, W.; Backert, S.; Saur, D.; Schmid, R.M.; et al. Helicobacter pylori HopH (OipA) and bacterial pathogenicity: Genetic and functional genomic analysis of hopH gene polymorphisms. J. Infect. Dis. 2006, 194, 1346–1355.spa
dc.relation.references77. Teymournejad, O.; Mobarez, A.M.; Hassan, Z.M.; Moazzeni, S.M.; Yakhchali, B.; Eskandari, V. In silico prediction of exposure amino acid sequences of outer inflammatory protein A of Helicobacter pylori for surface display on Escherichia coli. Indian J. Hum. Genet. 2012, 18, 83–86.spa
dc.relation.references78. Alm, R.A.; Bina, J.; Andrews, B.M.; Doig, P.; Hancock, R.E.W.; Trust, T.J. Comparative genomics of Helicobacter pylori: Analysis of the outer membrane protein families. Infect. Immun. 2000, 68, 4155–4168.spa
dc.relation.references79. De Jonge, R.; Durrani, Z.; Rijpkema, S.G.; Kuipers, E.J.; van Vliet, A.H.; Kusters, J.G. Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J. Med. Microbiol. 2004, 53, 375–379.spa
dc.relation.references80. Sugimoto, M.; Ohno, T.; Graham, D.; Yamaoka, Y. Helicobacter pylori outer membrane proteins on gastric mucosal interleukin 6 and 11 expression in Mongolian gerbils. J. Gastroenterol. Hepatol. 2011, 26, 1677–1684.spa
dc.relation.references81. Odenbreit, S.; Till, M.; Hofreuter, D.; Faller, G.; Haas, R. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 1999, 31, 1537–1548.spa
dc.relation.references82. Senkovich, O.A.; Yin, J.; Ekshyyan, V.; Conant, C.; Traylor, J.; Adegboyega, P.; McGee, D.J.; Rhoads, R.E.; Slepenkov, S.; Testerman, T.L. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect. Immun. 2011, 79, 3106–3116.spa
dc.relation.references83. Annoni G, Colombo M, Cantaluppi MC, Khlat B, Lampertico P, Rojkind M. 1989. Serum type III procollagen peptide and laminin (Lam‐P1) detect alcoholic hepatitis in chronic alcohol abusers. Hepatology 9:693–697.spa
dc.relation.references84. Issa S, Moran AP, Ustinov SN, Lin JH, Ligtenberg AJ, Karlsson NG. O-linked oligosaccharides from salivary agglutinin: Helicobacter pylori binding sialyl-Lewis x and Lewis b are terminating moieties on hyperfucosylated oligo-N-acetyllactosamine. Glycobiology. 2010;20:1046–1057spa
dc.relation.references85. Kenny DT, Skoog EC, Lindén SK, Struwe WB, Rudd PM, Karlsson NG. Presence of terminal N-acetylgalactosamineβ1-4N-acetylglucosamine residues on O-linked oligosaccharides from gastric MUC5AC: involvement in Helicobacter pylori colonization? Glycobiology. 2012;22:1077–1085.spa
dc.relation.references86. Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin TH, Sutton P, McGuckin MA. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 2009 Oct;5(10):e1000617. doi: 10.1371/journal.ppat.1000617.spa
dc.relation.references87. Hori Y, Sugiyama H, Soma T, Nishida K. Expression of membrane-associated mucins in cultivated human oral mucosal epithelial cells. Cornea. 2007 Oct;26(9 Suppl 1):S65-9. PubMed PMID: 17881919.spa
dc.relation.references88. Ukkonen H, Pirhonen P, Herrala M, Mikkonen JJ, Singh SP, Sormunen R, Kullaa AM. Oral mucosal epithelial cells express the membrane anchored mucin MUC1. Arch Oral Biol. 2017 Jan;73:269-273. doi: 10.1016/j.archoralbio.2016.10.019.spa
dc.relation.references89. Walz, A.; Odenbreit, S.; Stühler, K.; Wattenberg, A.; Meyer, H.E.; Mahdavi, J.; Borén, T.; Ruhl, S. Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics 2009, 9, 1582–1592spa
dc.relation.references90. . Aspholm, M.; Olfat, F.O.; Nordén, J.; Sondén, B.; Lundberg, C.; Sjöström, R.; Altraja, S.; Odenbreit, S.; Haas, R.; Wadström, T.; et al. SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog. 2006, 2, e110.spa
dc.relation.references91. Walz, A.; Odenbreit, S.; Mahdavi, J.; Boren, T.; Ruhl, S. Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 2005, 15, 700–708.spa
dc.relation.references92. Yamaoka, Y., Ojo, O., Fujimoto, S., Odenbreit, S., Haas, R., Gutierrez, O., et al. (2006). Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55, 775–781. doi: 10.1136/gut.2005.083014spa
dc.relation.references93. Peek,R.M.,andBlaser,M.J.(2002). Helicobacter pylori and gastro intestinal tract adenocarcinomas. Nat.Rev.Cancer 2,28–37.doi:10.1038/nrc703spa
dc.relation.references94. Testerman TL, McGee DJ, Mobley HLT. Adherence and Colonization. In: Mobley HLT, Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and Genetics. Washington (DC): ASM Press; 2001. Chapter 34. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2437/spa
dc.relation.references95. Raju D, Rizzuti D, Jones NL. Cell culture-based assays to test for bacterial adherence and internalization. Methods Mol Biol. 2012;921:69-76. PubMed PMID: 23015493spa
dc.relation.references96. Amieva MR, Salama NR, Tompkins LS, Falkow S (2002) Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell Microbiol 4:677–690spa
dc.relation.references97. Terebiznik MR et al (2006) Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect Immun 74:6599–6614spa
dc.relation.references98. Liu, H., Semino-Mora, C., & Dubois, A. (2012). Mechanism of H. pylori intracellular entry: an in vitro study. Frontiers in cellular and infection microbiology, 2, 13. doi:10.3389/fcimb.2012.00013spa
dc.relation.references99. Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Prim. 3, 17038 (2017)spa
dc.relation.references100. Andersen R. N., Ganeshkumar N., Kolenbrander P. E. Helicobacter pylori adheres selectively to Fusobacteriumspp. Oral Microbiol. Immunol. 1998;13:51–54.spa
dc.relation.references101. Nakazawa T., Ishibashi M., Konishi H., Takemoto T., Shigeeda M., Kochiyama T. Hemagglutinating activity of Campylobacter pylori. Infect. Immun. 1989;57:989–991.spa
dc.relation.references102. Chitsazi MT, Fattahi E, Farahani RM, Fattahi S. Helicobacter pylori in the dental plaque: is it of diagnostic value for gastric infection? Med Oral Patol Oral Cir Bucal. 2006 Jul 1;11(4):E325-8.spa
dc.relation.references103. Suk FM, Chen SH, Ho YS, Pan S, Lou HY, Chang CC, Hsieh CR, Cheng YS, Lien GS. It is difficult to eradicate Helicobacter pylori from dental plaque by triple therapy. Zhonghua Yi Xue Za Zhi (Taipei). 2002 Oct;65(10):468-73.spa
dc.relation.references104. Assumpção, M. B., Martins, L. C., Melo Barbosa, H. P., Barile, K. A., de Almeida, S. S., Assumpção, P. P., & Corvelo, T. C. (2010). Helicobacter pylori in dental plaque and stomach of patients from Northern Brazil. World journal of gastroenterology, 16(24), 3033-9.spa
dc.relation.references105. Momtaz H, Souod N, Dabiri H, Sarshar M. Study of Helicobacter pylori genotype status in saliva, dental plaques, stool and gastric biopsy samples. World J Gastroenterol. 2012 May 7;18(17):2105-11. doi: 0.3748/wjg.v18.i17.2105.spa
dc.relation.references106. Bago I, Bago J, Plečko V, Aurer A, Majstorović K, Budimir A. The effectiveness of systemic eradication therapy against oral Helicobacter pylori. J Oral Pathol Med. 2011 May;40(5):428-32. doi: 10.1111/j.1600-0714.2010.00989.x. Epub 2010 Dec 28.spa
dc.relation.references107. Gao J, Li Y, Wang Q, Qi C, Zhu S. Correlation between distribution of Helicobacter pylori in oral cavity and chronic stomach conditions. J Huazhong Univ Sci Technolog Med Sci. 2011 Jun;31(3):409-412. doi: 10.1007/s11596-011-0391-6. Epub 2011 Jun 14..spa
dc.relation.references108. Song Q, Haller B, Ulrich D, Wichelhaus A, Adler G, Bode G. Quantitation of Helicobacter pylori in dental plaque samples by competitive polymerase chain reaction. J Clin Pathol. 2000 Mar;53(3):218-22.spa
dc.relation.references109. Krajden, M. Fuksa, J. Anderson et al., “Examination of human stomach biopsies, saliva, and dental plaque for Campylobacter pylori,” Journal of Clinical Microbiology, vol. 27, no. 6, pp. 1397– 1398, 1989.spa
dc.relation.references110. Parsonnet J, Shmuely H, Haggerty T. Fecal and oral shedding of Helicobacter pylori from healthy infected adults. JAMA. 1999 Dec 15;282(23):2240-5.spa
dc.relation.references111. Agarwal, S., & Jithendra, K. D. (2012). Presence of Helicobacter pylori in subgingival plaque of periodontitis patients with and without dyspepsia, detected by polymerase chain reaction and culture. Journal of Indian Society of Periodontology, 16(3), 398-403.spa
dc.relation.references112. Savoldi, M. G. Marinone, R. Negrini, D. Facchinetti, A. Lanzini, and P. L. Sapelli, “Absence of Helicobacter pylori in dental plaque determined by immunoperoxidase,” Helicobacter, vol. 3, no. 4, pp. 283–288, 1998.spa
dc.relation.references113. Checchi, P. Felice, C. Acciardi et al., “Absence of Helicobacter pylori in dental plaque assessed by stool test,” American Journal of Gastroenterology, vol. 95, no. 10, pp. 3005–3006, 2000spa
dc.relation.references114. Mahdavi, J., Sondén, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., … Borén, T. (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science (New York, N.Y.), 297(5581), 573–578. doi:10.1126/science.1069076spa
dc.relation.references115. García C, Apolinaria, Barra T, Ricardo, Delgado Sch, Carolina, Kawaguchi P, Fernando, Trabal F, Natalia, Montenegro H, Sonia, & González C, Carlos. (2006). Genotipificación de aislados clínicos de Helicobacter pylori en base a genes asociados a virulencia cagA, vacA y babA2: Primer aislamiento de una cepa babA2 positiva en pacientes chilenos. Revista médica de Chile, 134(8), 981-988. https://dx.doi.org/10.4067/S0034-98872006000800006spa
dc.relation.references116. Marshall, B. J., H. Royce, D. I. Annear, C. S.Goodwin, J. W. Pearman, J. R. Warren, and J. A. Armstrong. 1984. Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Lett. 2583-88spa
dc.relation.references117. Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM. Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect Immun.1998 Feb;66(2):444-7. PubMed PMID: 9453593; PubMed Central PMCID: PMC107925.spa
dc.relation.references118. Shao, S. H., Wang, H., Chai, S. G., & Liu, L. M. (2005). Research progress on Helicobacter pylori outer membrane protein. World journal of gastroenterology, 11(20), 3011–3013. doi:10.3748/wjg.v11.i20.3011spa
dc.relation.references119. Yamaoka Y, Kita M, Kodama T, Imamura S, Ohno T, Sawai N, Ishimaru A, Imanishi J, Graham DY. Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. Gastroenterology. 2002;123:1992–2004.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordPrimary gingival culturespa
dc.subject.keywordTissue engineeringspa
dc.subject.keywordHelicobacter pylorispa
dc.subject.keywordInfectivityspa
dc.subject.keywordImmunohistochemistryspa
dc.subject.keywordImmunofluorescencespa
dc.subject.lembHelicobacter pylorispa
dc.subject.lembCélulas epitelialesspa
dc.subject.lembInmunofluorescenciaspa
dc.subject.lembCultivo in vitrospa
dc.subject.lembInmunohistoquímicaspa
dc.subject.lembCultivo de tejidosspa
dc.subject.proposalCultivo primario gingivalspa
dc.subject.proposalHelicobacter pylorispa
dc.subject.proposalInfectividadspa
dc.subject.proposalIngeniería tejidosspa
dc.subject.proposalInmunohistoquímicaspa
dc.subject.proposalInmunofluorescenciaspa
dc.titleDiseño de un modelo in vitro de células epiteliales primarias gingivales humanas para evaluar infectividad de Helicobacter pylori (ATCC 43504)spa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2019MaciasFabio.pdf
Tamaño:
1.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2019MaciasFabio1.pdf
Tamaño:
152.48 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación Facultad
Thumbnail USTA
Nombre:
2019MaciasFabio2.pdf
Tamaño:
202.14 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo Confidencialidad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: