Binding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalase

dc.contributor.authorCollazos, Nicolespa
dc.contributor.authorGarcía, Germánspa
dc.contributor.authorMalagón, Andrésspa
dc.contributor.authorCaicedo, Obradithspa
dc.contributor.authorVargas, Edgar Fspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=guKP7TcAAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0002-3767-0636spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-05-21T16:25:31Zspa
dc.date.available2020-05-21T16:25:31Zspa
dc.date.issued2020-05-21spa
dc.description.abstractResorcinarenes are macrocyclic molecules that can bind different molecules in a supramolecular fashion. There are some sulfonated water-soluble derivatives that have been investigated to bind proteins avoiding fibrillation. The interactionwith enzymes such as catalase (CAT) allows the interpretation of the possible effects of the use of resorcinarenes on human health or environmental applications. The interaction of five sulfonated resorcinarenes with different chemical structures was investigated by using different biophysical methods. The results of the spectroscopic experiments (fluorescence, synchronous fluorescence, and Uv-vis spectrophotometry) show different degrees of structural change, indicating that the binding of themacrocycles thatwere studied causes alterations on the conformation of CAT. The resorcinarenes reduce the activity of CAT in different extent, two macrocycles (named Na4EtRA and Na4PrRA, according to ethyl or propyl moieties at the lower pendant group) exhibit significant inhibition capacity (until ca. 70%). The study about inhibition types reveals a noncompetitive mechanism for all the studied resorcinarenes. The docking calculations reveal that the macrocycles bond mainly to two domains of the CAT structure, which are not related with the active site.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1016/j.ijbiomac.2019.07.197spa
dc.identifier.urihttp://hdl.handle.net/11634/23364
dc.relation.annexedhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesJ. Vlasits, C. Jakopitsch, M. Bernroitner, M. Zamocky, P.G. Furtmüller, C. Obinger, Mechanisms of catalase activity of heme peroxidases, Arch. Biochem. Biophys. 500 (2010) 74–81.spa
dc.relation.referencesH. Aebi, Methods in Enzymology, vol. 105, Academic Press. Inc, 1984 121–126 ISBN 0.12-182005-X105.spa
dc.relation.referencesH.S. Tehrani, A.A. Moosavi-Movahedi, Catalase and its mysteries, Prog. Biophys. Mol. Biol. 140 (2018) 5–12.spa
dc.relation.referencesN. Lončar, M.W. Fraaije, Catalases as biocatalysts in technical applications: current state and perspectives, 99 (8) (2015) 3351–3357.spa
dc.relation.referencesA.G. Grigoras, Catalase immobilization—a review, Biochem. Eng. J. 117 (2017) 1–20.spa
dc.relation.referencesA.M. Eberhardt, V. Pedroni, M. Volpe, M.L. Ferreira, Immobilization of catalase from Aspergillus niger on inorganic and biopolymeric supports for H2O2 decomposition, Appl. Catal. B 47 (2004) 153–163.spa
dc.relation.referencesJ. Kaushal, S. Mehandia, G. Singh, G. Singh, S. Kumar, Catalase enzyme: application in bioremediation and food industry, Biocatal. Agric. Biotechnol. 16 (2018) 192–199.spa
dc.relation.referencesS. Dong, S.Wang, E. Gyimah, N. Zhu, K.Wang, X.Wu, Z. Zhang, A novel electrochemical inmunosensor based on catalase functionalized AuNPs-loaded self-assembled polymer nanospheres for ultrasensitive detection of tetrabromobisphenol A bis(2- hydroxyethyl)ether, Anal. Chim. Acta. 1048 (2019) 50–57.spa
dc.relation.referencesB. Elsebaia, M.E. Ghicab, M.N. Abbasa, C.M.A. Brett, Catalase based hydrogen peroxide biosensor for mercurydetermination by inhibition measurements, J. Hazard. Mater. 340 (2017) 344–350.spa
dc.relation.referencesS. Kourdali, A. Badis, A. Boucherit, Degradation of direct yellow 9 by electro-Fenton: process study and optimization and, monitoring of treated water toxicity using catalase, Ecotoxicol. Environ. Saf. 110 (2014) 110–120.spa
dc.relation.referencesH. Bártíková, L. Skálová, L. Stuchlíková, I. Vokrál, T. Vanek, R. Podlipna, Xenobioticmetabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment, Drug. Metab. Rev. Early Online (2015) 1–14.spa
dc.relation.referencesM. Dazy, J.F. Masfaraud, J.F. Férard, Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw, Chemosphere 75 (2009) 297–302.spa
dc.relation.referencesM. Solé, S. Rodríguez, V. Papiol, F. Maynou, J.E. Cartes, Xenobiotic metabolism markers in marine fish with different trophic strategies and their relationship to ecological variables, Comp. Biochem. Physiol. C: Pharmacol. Toxicol. 149 (2009) 83–89.spa
dc.relation.referencesJ. Arning, S. Stolte, A. Böschen, F. Stock, W.-R. Pitner, U.Welz-Biermann, B. Jastorffa, J. Ranke, Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalized side chains and anions of ionic liquids on acetylcholinesterase, Green Chem. 10 (2008) 47–58.spa
dc.relation.referencesH.J. Schneider, Mechanisms of molecular recognition: investigations of organic hostguest complexes, Angew. Chem. Int. Ed. Engl. 30 (1991) 1417–1436.spa
dc.relation.referencesP. Timmerman, W. Verboom, D.N. Reinhoudt, Resorcinarenes, Tetrahedron 52 (8) (1996) 2663–2704spa
dc.relation.referencesE. Sanabria,M.Maldonado,M.A. Esteso, E.F. Vargas, Volumetric and acoustic properties of two sodium sulfonateresorcin[4]arenes in water and dimethylsulfoxide, J. Mol. Liq. 249 (2018) 868–876.spa
dc.relation.referencesL. Mutihac, H.-J. Buschmann, R.-C. Mutihac, E. Schollmeyer, Complexation and separation of amines, amino acids, and peptides by functionalized calix[n]arenes, J. Incl. Phenom. Macrocycl. Chem. 51 (2005) 1–10.spa
dc.relation.referencesH. Mansikkamki, M. Nissinen, K. Rissanen, Noncovalent π-π stacked exo-functional nanotubes: subtle control of resorcinarene self-assembly, Angew. Chem. Int. Ed. 43 (2004) 1243–1246.spa
dc.relation.referencesW.M. Hassen, C.Martelet, F. Davis, S.P.J. Higson, A. Abdelghani, S. Helali, N. Jaffrezic- Renault, Calix[4]arene based molecules for amino-acid detection, Sensors Actuators B Chem. 124 (2007) 38–45.spa
dc.relation.referencesB. Mokhtari, K. Pourabdollah, Applications of calixarene nano-baskets in pharmacology, J. Incl. Phenom. Macrocycl. Chem. 73 (2012) 1–15.spa
dc.relation.referencesX. Han, J. Park, W. Wu, A. Malagon, L. Wang, E. Vargas, A. Wikramanayake, K.N. Houk, R.M. Leblanc, A resorcinarene for inhibition of Aβ fibrillation. Chem. Sci. 8 (2017) 2003–2009, Tetrahedron Lett. 42 (51) (2000) 10111–10115.spa
dc.relation.referencesE. Kazakova, N.Makarova, A. Ziganshina, L.Muslinkina, A.Muslinkina,W. Habicherb, (Novel water-soluble tetrasulfonatomethylcalix[4]resorcinarenes).spa
dc.relation.referencesZ.X. Chi, R.T. Liu, T. Yue, X.Y. Fang, C.Z. Gao, Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations, J. Agric. Food Chem. 58 (2010) 10262–10269.spa
dc.relation.referencesA. Grosdidier, V. Zoete, O. Michielin, Swissdock a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res. 39 (2011) 270–277.spa
dc.relation.referencesM.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Chem. 4 (2012) 1–17.spa
dc.relation.referencesE.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF chimera−a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605–1612.spa
dc.relation.referencesB. Yang, F. Hao, J. Li, D. Chen, R. Liu, Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies, J. Photochem. Photobiol. B 128 (2013) 35–42.spa
dc.relation.referencesS. Islamovic, B. Galic, M. Milos, A study of the inhibition of catalase by dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH], J. Enzyme Inhib. Med. Chem. 29 (5) (2014) 744–748.spa
dc.relation.referencesQ. Xu, Y. Lu, L. Jing, L. Cai, X. Zhu, J. Xie, X. Hu, Specific binding and inhibition of 6- benzylaminopurine to catalase: multiple spectroscopic methods combined with molecular docking study, Spectrochim. Acta A 123 (2014) 327–335.spa
dc.relation.referencesD. Majumder, A. Das, C. Saha, Catalase inhibition an anti cancer property of flavonoids: a kinetic and structural evaluation, Int. J. Biol. Macromol. 104 ( (2017) 929–935.spa
dc.relation.referencesB. Koohshekan, A. Divsalar, M. Saiedifar, A.A. Saboury, B. Ghalandari, A. Gholamian, A. Seyedarabi, Protective effects of aspirin on the function of bovine liver catalase: a spectroscopy and molecular docking study, J. Mol. Liq. 218 (2016) 8–15.spa
dc.relation.referencesL. Yang, D. Huo, C. Hou, M. Yang, H. Fa, X. Luo, Interaction of monosulfonate tetraphenyl porphyrin (H2TPPS1) with plant-esterase: determination of the binding mechanism by spectroscopic methods, Spectrochim. Acta A 78 (2011) 1349–1355.spa
dc.relation.referencesR. Yekta, G. Dehghan, S. Rashtbari, R. Ghadari, A. Moosavi-Movahedi, The inhibitory effect of farnesiferol C against catalase; kinetics, interaction mechanism and molecular docking simulation, Int. J. Biol. Macromol. 113 (2018) 1258–1265.spa
dc.relation.referencesY. Teng, L. Zou, M. Huang, W. Zong, Molecular interaction of 2- mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor, J. Photochem. Photobiol. B 141 (2014) 241–246.spa
dc.relation.referencesM. van deWeert, L. Stella, Fluorescence quenching and ligand binding: a critical discussion of a popular methodology, J. Mol. Struct. 998 (2011) 144–150.spa
dc.relation.referencesR. Yekta, G. Dehghan, S. Rashtbari, N. Sheibani, A. Moosavi-Movahedi, Activation of catalase by pioglitazone: multiple spectroscopic methods combined with molecular docking studies, J. Mol. Recognit. 30 (2017) 1–11.spa
dc.relation.referencesJ.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.spa
dc.relation.referencesS. Rashtbari, G. Dehghan, R. Yekta, A. Jouyban, M. Iranshahi, Effects of resveratrol on the structure and catalytic function of bovine liver catalase (BLC): spectroscopic and theoretical studies, Adv. Pharm. Bull. 7 (2017) 349–357.spa
dc.relation.referencesM. Xu, Z. Cui, L. Zhao, S. Hu,W. Zong, R. Liu, Characterizing the binding interactions of PFOA and PFOS with catalase at the molecular level, Chemosphere 203 (2018) 360–367.spa
dc.relation.referencesX.Wei, Z. Ge, Effect of graphene oxide on conformation and activity of catalase, Carbon 60 (2013) 401–409.spa
dc.relation.referencesM.R. Murthy, T.J. Reid, A. Sicignano, N. Tanaka, M. Rossman, Structure of beef liver catalase, J. Mol. Biol. 152 (1981) 465–499.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordCatalasespa
dc.subject.keywordEnzymespa
dc.subject.keywordResorcinarenesspa
dc.subject.keywordBindingspa
dc.titleBinding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalasespa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
761.pdf
Tamaño:
2.78 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: