Binding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalase
dc.contributor.author | Collazos, Nicole | spa |
dc.contributor.author | García, Germán | spa |
dc.contributor.author | Malagón, Andrés | spa |
dc.contributor.author | Caicedo, Obradith | spa |
dc.contributor.author | Vargas, Edgar F | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=guKP7TcAAAAJ&hl=es | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-3767-0636 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-05-21T16:25:31Z | spa |
dc.date.available | 2020-05-21T16:25:31Z | spa |
dc.date.issued | 2020-05-21 | spa |
dc.description.abstract | Resorcinarenes are macrocyclic molecules that can bind different molecules in a supramolecular fashion. There are some sulfonated water-soluble derivatives that have been investigated to bind proteins avoiding fibrillation. The interactionwith enzymes such as catalase (CAT) allows the interpretation of the possible effects of the use of resorcinarenes on human health or environmental applications. The interaction of five sulfonated resorcinarenes with different chemical structures was investigated by using different biophysical methods. The results of the spectroscopic experiments (fluorescence, synchronous fluorescence, and Uv-vis spectrophotometry) show different degrees of structural change, indicating that the binding of themacrocycles thatwere studied causes alterations on the conformation of CAT. The resorcinarenes reduce the activity of CAT in different extent, two macrocycles (named Na4EtRA and Na4PrRA, according to ethyl or propyl moieties at the lower pendant group) exhibit significant inhibition capacity (until ca. 70%). The study about inhibition types reveals a noncompetitive mechanism for all the studied resorcinarenes. The docking calculations reveal that the macrocycles bond mainly to two domains of the CAT structure, which are not related with the active site. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.1016/j.ijbiomac.2019.07.197 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/23364 | |
dc.relation.annexed | http://unidadinvestigacion.usta.edu.co | spa |
dc.relation.references | J. Vlasits, C. Jakopitsch, M. Bernroitner, M. Zamocky, P.G. Furtmüller, C. Obinger, Mechanisms of catalase activity of heme peroxidases, Arch. Biochem. Biophys. 500 (2010) 74–81. | spa |
dc.relation.references | H. Aebi, Methods in Enzymology, vol. 105, Academic Press. Inc, 1984 121–126 ISBN 0.12-182005-X105. | spa |
dc.relation.references | H.S. Tehrani, A.A. Moosavi-Movahedi, Catalase and its mysteries, Prog. Biophys. Mol. Biol. 140 (2018) 5–12. | spa |
dc.relation.references | N. Lončar, M.W. Fraaije, Catalases as biocatalysts in technical applications: current state and perspectives, 99 (8) (2015) 3351–3357. | spa |
dc.relation.references | A.G. Grigoras, Catalase immobilization—a review, Biochem. Eng. J. 117 (2017) 1–20. | spa |
dc.relation.references | A.M. Eberhardt, V. Pedroni, M. Volpe, M.L. Ferreira, Immobilization of catalase from Aspergillus niger on inorganic and biopolymeric supports for H2O2 decomposition, Appl. Catal. B 47 (2004) 153–163. | spa |
dc.relation.references | J. Kaushal, S. Mehandia, G. Singh, G. Singh, S. Kumar, Catalase enzyme: application in bioremediation and food industry, Biocatal. Agric. Biotechnol. 16 (2018) 192–199. | spa |
dc.relation.references | S. Dong, S.Wang, E. Gyimah, N. Zhu, K.Wang, X.Wu, Z. Zhang, A novel electrochemical inmunosensor based on catalase functionalized AuNPs-loaded self-assembled polymer nanospheres for ultrasensitive detection of tetrabromobisphenol A bis(2- hydroxyethyl)ether, Anal. Chim. Acta. 1048 (2019) 50–57. | spa |
dc.relation.references | B. Elsebaia, M.E. Ghicab, M.N. Abbasa, C.M.A. Brett, Catalase based hydrogen peroxide biosensor for mercurydetermination by inhibition measurements, J. Hazard. Mater. 340 (2017) 344–350. | spa |
dc.relation.references | S. Kourdali, A. Badis, A. Boucherit, Degradation of direct yellow 9 by electro-Fenton: process study and optimization and, monitoring of treated water toxicity using catalase, Ecotoxicol. Environ. Saf. 110 (2014) 110–120. | spa |
dc.relation.references | H. Bártíková, L. Skálová, L. Stuchlíková, I. Vokrál, T. Vanek, R. Podlipna, Xenobioticmetabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment, Drug. Metab. Rev. Early Online (2015) 1–14. | spa |
dc.relation.references | M. Dazy, J.F. Masfaraud, J.F. Férard, Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw, Chemosphere 75 (2009) 297–302. | spa |
dc.relation.references | M. Solé, S. Rodríguez, V. Papiol, F. Maynou, J.E. Cartes, Xenobiotic metabolism markers in marine fish with different trophic strategies and their relationship to ecological variables, Comp. Biochem. Physiol. C: Pharmacol. Toxicol. 149 (2009) 83–89. | spa |
dc.relation.references | J. Arning, S. Stolte, A. Böschen, F. Stock, W.-R. Pitner, U.Welz-Biermann, B. Jastorffa, J. Ranke, Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalized side chains and anions of ionic liquids on acetylcholinesterase, Green Chem. 10 (2008) 47–58. | spa |
dc.relation.references | H.J. Schneider, Mechanisms of molecular recognition: investigations of organic hostguest complexes, Angew. Chem. Int. Ed. Engl. 30 (1991) 1417–1436. | spa |
dc.relation.references | P. Timmerman, W. Verboom, D.N. Reinhoudt, Resorcinarenes, Tetrahedron 52 (8) (1996) 2663–2704 | spa |
dc.relation.references | E. Sanabria,M.Maldonado,M.A. Esteso, E.F. Vargas, Volumetric and acoustic properties of two sodium sulfonateresorcin[4]arenes in water and dimethylsulfoxide, J. Mol. Liq. 249 (2018) 868–876. | spa |
dc.relation.references | L. Mutihac, H.-J. Buschmann, R.-C. Mutihac, E. Schollmeyer, Complexation and separation of amines, amino acids, and peptides by functionalized calix[n]arenes, J. Incl. Phenom. Macrocycl. Chem. 51 (2005) 1–10. | spa |
dc.relation.references | H. Mansikkamki, M. Nissinen, K. Rissanen, Noncovalent π-π stacked exo-functional nanotubes: subtle control of resorcinarene self-assembly, Angew. Chem. Int. Ed. 43 (2004) 1243–1246. | spa |
dc.relation.references | W.M. Hassen, C.Martelet, F. Davis, S.P.J. Higson, A. Abdelghani, S. Helali, N. Jaffrezic- Renault, Calix[4]arene based molecules for amino-acid detection, Sensors Actuators B Chem. 124 (2007) 38–45. | spa |
dc.relation.references | B. Mokhtari, K. Pourabdollah, Applications of calixarene nano-baskets in pharmacology, J. Incl. Phenom. Macrocycl. Chem. 73 (2012) 1–15. | spa |
dc.relation.references | X. Han, J. Park, W. Wu, A. Malagon, L. Wang, E. Vargas, A. Wikramanayake, K.N. Houk, R.M. Leblanc, A resorcinarene for inhibition of Aβ fibrillation. Chem. Sci. 8 (2017) 2003–2009, Tetrahedron Lett. 42 (51) (2000) 10111–10115. | spa |
dc.relation.references | E. Kazakova, N.Makarova, A. Ziganshina, L.Muslinkina, A.Muslinkina,W. Habicherb, (Novel water-soluble tetrasulfonatomethylcalix[4]resorcinarenes). | spa |
dc.relation.references | Z.X. Chi, R.T. Liu, T. Yue, X.Y. Fang, C.Z. Gao, Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations, J. Agric. Food Chem. 58 (2010) 10262–10269. | spa |
dc.relation.references | A. Grosdidier, V. Zoete, O. Michielin, Swissdock a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res. 39 (2011) 270–277. | spa |
dc.relation.references | M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Chem. 4 (2012) 1–17. | spa |
dc.relation.references | E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF chimera−a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605–1612. | spa |
dc.relation.references | B. Yang, F. Hao, J. Li, D. Chen, R. Liu, Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies, J. Photochem. Photobiol. B 128 (2013) 35–42. | spa |
dc.relation.references | S. Islamovic, B. Galic, M. Milos, A study of the inhibition of catalase by dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH], J. Enzyme Inhib. Med. Chem. 29 (5) (2014) 744–748. | spa |
dc.relation.references | Q. Xu, Y. Lu, L. Jing, L. Cai, X. Zhu, J. Xie, X. Hu, Specific binding and inhibition of 6- benzylaminopurine to catalase: multiple spectroscopic methods combined with molecular docking study, Spectrochim. Acta A 123 (2014) 327–335. | spa |
dc.relation.references | D. Majumder, A. Das, C. Saha, Catalase inhibition an anti cancer property of flavonoids: a kinetic and structural evaluation, Int. J. Biol. Macromol. 104 ( (2017) 929–935. | spa |
dc.relation.references | B. Koohshekan, A. Divsalar, M. Saiedifar, A.A. Saboury, B. Ghalandari, A. Gholamian, A. Seyedarabi, Protective effects of aspirin on the function of bovine liver catalase: a spectroscopy and molecular docking study, J. Mol. Liq. 218 (2016) 8–15. | spa |
dc.relation.references | L. Yang, D. Huo, C. Hou, M. Yang, H. Fa, X. Luo, Interaction of monosulfonate tetraphenyl porphyrin (H2TPPS1) with plant-esterase: determination of the binding mechanism by spectroscopic methods, Spectrochim. Acta A 78 (2011) 1349–1355. | spa |
dc.relation.references | R. Yekta, G. Dehghan, S. Rashtbari, R. Ghadari, A. Moosavi-Movahedi, The inhibitory effect of farnesiferol C against catalase; kinetics, interaction mechanism and molecular docking simulation, Int. J. Biol. Macromol. 113 (2018) 1258–1265. | spa |
dc.relation.references | Y. Teng, L. Zou, M. Huang, W. Zong, Molecular interaction of 2- mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor, J. Photochem. Photobiol. B 141 (2014) 241–246. | spa |
dc.relation.references | M. van deWeert, L. Stella, Fluorescence quenching and ligand binding: a critical discussion of a popular methodology, J. Mol. Struct. 998 (2011) 144–150. | spa |
dc.relation.references | R. Yekta, G. Dehghan, S. Rashtbari, N. Sheibani, A. Moosavi-Movahedi, Activation of catalase by pioglitazone: multiple spectroscopic methods combined with molecular docking studies, J. Mol. Recognit. 30 (2017) 1–11. | spa |
dc.relation.references | J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006. | spa |
dc.relation.references | S. Rashtbari, G. Dehghan, R. Yekta, A. Jouyban, M. Iranshahi, Effects of resveratrol on the structure and catalytic function of bovine liver catalase (BLC): spectroscopic and theoretical studies, Adv. Pharm. Bull. 7 (2017) 349–357. | spa |
dc.relation.references | M. Xu, Z. Cui, L. Zhao, S. Hu,W. Zong, R. Liu, Characterizing the binding interactions of PFOA and PFOS with catalase at the molecular level, Chemosphere 203 (2018) 360–367. | spa |
dc.relation.references | X.Wei, Z. Ge, Effect of graphene oxide on conformation and activity of catalase, Carbon 60 (2013) 401–409. | spa |
dc.relation.references | M.R. Murthy, T.J. Reid, A. Sicignano, N. Tanaka, M. Rossman, Structure of beef liver catalase, J. Mol. Biol. 152 (1981) 465–499. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Catalase | spa |
dc.subject.keyword | Enzyme | spa |
dc.subject.keyword | Resorcinarenes | spa |
dc.subject.keyword | Binding | spa |
dc.title | Binding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalase | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |