On the use of neuroevolutive methods as support tools for diagnosing appendicitis and tuberculosis

dc.contributor.authorOrjuela-Cañón, Alvaro Davidspa
dc.contributor.authorPosada-Quintero, Hugo Fernandospa
dc.contributor.authorCesar Hernando, Valenciaspa
dc.contributor.authorMendoza, Leonardospa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-08-06T17:48:45Zspa
dc.date.available2019-08-06T17:48:45Zspa
dc.date.issued2018-09-13spa
dc.description.abstractArtificial neural networks are being used in diagnosis support systems to detect different kind of diseases. As the design of multilayer perceptron is an open question, the present work shows a comparison between a traditional empirical way and neuroevolution method to find the best architecture to solve the disease detection problem. Tuberculosis and appendicitis databases were employed to test both proposals. Results show that neuroevolution offers a good alternative for the tuberculosis problem but there is lacks of performance in the appendicitis one.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1007/978-3-030-00350-0_15spa
dc.identifier.urihttp://hdl.handle.net/11634/17997
dc.relation.referencesKalantari, A., Kamsin, A., Shamshirband, S., Gani, A., Alinejad-Rokny, H., Chronopoulos, A.T.: Computational intelligence approaches for classification of medical data: state-of-theart, future challenges and research directions. Neurocomputing 276, 2–22 (2017)spa
dc.relation.referencesAmato, F., López, A., Peña-Méndez, E.M., Vavnhara, P., Hampl, A., Havel, J.: Artificial neural networks in medical diagnosis (2013)spa
dc.relation.referencesSeera, M., Lim, C.P.: A hybrid intelligent system for medical data classification. Expert Syst. Appl. 41, 2239–2249 (2014)spa
dc.relation.referencesPrabhudesai, S.G., Gould, S., Rekhraj, S., Tekkis, P.P., Glazer, G., Ziprin, P.: Artificial neural networks: useful aid in diagnosing acute appendicitis. World J. Surg. 32, 305–309 (2008)spa
dc.relation.referencesHuang, R., Lee, S., Lai, C., Hsiao, Y., Ting, H.: Acute effects of obstructive sleep apnea on autonomic nervous system, arterial stiffness and heart rate in newly diagnosed untreated patients. Sleep Med. 14, e27 (2013)spa
dc.relation.referencesTing, H.-W., Wu, J.-T., Chan, C.-L., Lin, S.-L., Chen, M.-H.: Decision model for acute appendicitis treatment with decision tree technology - a modification of the alvarado scoring system. J. Chin. Med. Assoc. 73, 401–406 (2010)spa
dc.relation.referencesPark, S.Y., Kim, S.M.: Acute appendicitis diagnosis using artificial neural networks. Technol. Health Care 23, S559–S565 (2015)spa
dc.relation.referencesYoldaş, Ö., Tez, M., Karaca, T.: Artificial neural networks in the diagnosis of acute appendicitis. Am. J. Emerg. Med. 30, 1245–1247 (2012)spa
dc.relation.referencesSantos, A.M., Pereira, B.B., Seixas, J.M., Mello, F.C.Q., Kritski, A.L.: Neural networks: an application for predicting smear negative pulmonary tuberculosis. In: Auget, J.L., Balakrishnan, N., Mesbah, M., Molenberghs, G. (eds.) Advances in Statistical Methods for the Health Sciences, pp. 275–287. Springer, Boston (2007)spa
dc.relation.referencesEl-Solh, A.A., Hsiao, C.-B., Goodnough, S., Serghani, J., Grant, B.J.B.: Predicting active pulmonary tuberculosis using an artificial neural network. Chest J. 116, 968–973 (1999)spa
dc.relation.referencesElveren, E., Yumuvak, N.: Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med. Syst. 35, 329–332 (2011)spa
dc.relation.referencesEr, O., Temurtas, F., Tanrikulu, A.Ç.: Tuberculosis disease diagnosis using artificial neural networks. J. Med. Syst. 34, 299–302 (2010)spa
dc.relation.referencesStanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)spa
dc.relation.referencesFloreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1, 47–62 (2008)spa
dc.relation.referencesMiikkulainen, R.: Neuroevolution. In: Encyclopedia of Machine Learning. Springer, New York (2010)spa
dc.relation.referencesWeiss, S.M., Kapouleas, I.: An empirical comparison of pattern recognition, neural nets and machine learning classification methods. Read. Mach. Learn. 177–183 (1990)spa
dc.relation.referencesKohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Presented at the (1995)spa
dc.relation.referencesHaykin, S.: Neural Networks and Learning Machines. Prentice Hall, Upper Saddle River (2009)spa
dc.relation.referencesRiedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: 1993 IEEE International Conference on Neural Networks, pp. 586– 591 (1993)spa
dc.relation.referencesBeale, M.H., Hagan, M.T., Demuth, H.B.: Neural network toolbox getting started guide R2011b (2011)spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordNeuroevolutionspa
dc.subject.keywordArtificial neural networksspa
dc.subject.keywordDiagnosis support systemsspa
dc.subject.keywordTuberculosisspa
dc.subject.keywordAppendicitisspa
dc.titleOn the use of neuroevolutive methods as support tools for diagnosing appendicitis and tuberculosisspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
On the use of neuroevolutive methods as support tools for diagnosing appendicitis and tuberculosis.pdf
Tamaño:
973.56 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: