Eficacia de dos especies de macrofitas fitorremediadoras (eichornia crassipes –buchón de agua y lemna minor –lenteja de agua) en bioensayos con aguas residuales del Lago Balmoral Urbano, Villavicencio
dc.contributor.advisor | Velosa Caicedo, Rodrigo Isaac | |
dc.contributor.author | Palomino Peredo, Kiara Margarita | |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001057120 | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?hl=es&user=yQnEuEQAAAAJ | spa |
dc.contributor.orcid | https://orcid.org/0000-0003-4316-1405 | spa |
dc.coverage.campus | CRAI-USTA Villavicencio | spa |
dc.date.accessioned | 2023-03-23T22:55:50Z | |
dc.date.available | 2023-03-23T22:55:50Z | |
dc.date.issued | 2022-10-10 | |
dc.description | El déficit de fuentes de agua limpias dada la presencia de contaminantes en el agua es una problemática ambiental no solo de nivel local, sino también regional y nacional en Colombia. Para contrarestar este problema, se han implementado diferentes sistemas de tratamiento de aguas incluyendo la fitoremediación. La intención de este estudio fue la de evaluar la capacidad fitoremediadora de dos especies de plantas acuáticas –Eichornia crassipes y Lemna minor – para remover dos contaminantes –nitrógeno amoniacal N-NH3 y hierro total Fe – a partir de aguas residuales del lago Balmoral producto de la actividad agroforestal y ganadera en áreas vecinas. A partir de muestras de agua residual, se realizó el montaje de 2 bioensayos, uno con 100 g de E. crassipes y otro con 20 g de L.minor, y se realizaron mediciones de los dos contaminantes cada 4-5 días por espacio de 1 mes. Adicionalmente, se estableció el grado de absorción de los 2 contaminantes a partir de la raíz de E. crassipes y hojas de L. minor por medio de la maceración de las partes de las plantas al inicio y al final de los bioensayos. Los resultados obtenidos resaltan en Eichornia crassipes su capacidad de absorción y acumulación de contaminantes (56.5% de N-NH3 y 47.1% de Fe total), y su alta reducción y remoción en el agua residual (95% de N-NH3 y 75.9% de Fe Total). Por el contrario, Lemna minor no fue en este estudio una planta eficiente en la reducción y remoción de contaminantes del agua residual (0.45% de N-NH3 y 45% de Fe total), con baja capacidad de bioacumulación (26.7% de N-NH3 y 11.3% de Fe total). Se destaca la alta capacidad fitoremediadora de E. crassipes similar a la reportada en otros estudios. Se realizan algunas recomendaciones para la implementación de un sistema de fitoremediación con macrófitas acuáticas en el lago Balmoral. | spa |
dc.description.abstract | The deficit of clean water sources due to the presence of contaminants in the water is an environmental problem not only at the local level, but also at the regional and national level in Colombia. To counteract this problem, different water treatment systems have been implemented, including phytoremediation. The intention of this study was to evaluate the phytoremediation capacity of two species of aquatic plants – Eichornia crassipes and Lemna minor – to remove two contaminants –ammoniacal nitrogen N-NH3 and total iron Fe – from Balmoral Lake wastewater, product of agroforestry and livestock activity in neighboring areas. From residual water samples, 2 bioassays were set up, one with 100 g of E. crassipes and the other with 20 g of L. minor, and measurements of the two contaminants were made every 4-5 days for a period of 1 month. Additionally, the degree of absorption of the 2 contaminants from the root of E. crassipes and leaves of L. minor was established by maceration of the plant parts at the beginning and at the end of the bioassays. The results obtained highlight in Eichornia crassipes its capacity for absorption and accumulation of pollutants (56.5% of N-NH3 and 47.1% of total Fe), and its high reduction and removal in wastewater (95% of N-NH3 and 75.9% Total Fe). On the contrary, Lemna minor was not in this study an efficient plant in the reduction and removal of pollutants from wastewater (0.45% of N-NH3 and 45% of total Fe), with low bioaccumulation capacity (26.7% of N- NH3 and 11.3% of total Fe). The high phytoremediation capacity of E. crassipes is outstanding, which is similar to that reported in other studies. Some recommendations are made for the implementation of a phytoremediation system with aquatic macrophytes in Lake Balmoral. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Ambiental | spa |
dc.description.domain | http://www.ustavillavicencio.edu.co/home/index.php/unidades/extension-y-proyeccion/investigacion | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Palomino Peredo, K. (2022). Eficacia de dos especies de macrofitas fitorremediadoras (eichornia crassipes –buchón de agua y lemna minor –lenteja de agua) en bioensayos con aguas residuales del Lago Balmoral Urbano, Villavicencio. [Trabajo de grado, Universidad Santo Tomás]. Repositorio | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/50023 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Ambiental | spa |
dc.publisher.program | Pregrado de Ingeniería Ambiental | spa |
dc.relation.references | Akhtar, A.B.T.; Yasar, A.; Ali, R.; Irfan, R. (2017). Phytoremediation using aquatic macrophytes. In Phytoremediation; Ansari, A., Gill, S., Gill, R.R., Lanza, G., Newman, L., Eds.; Springer: Cham, Switzerland, pp. 259–276. https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1007/978-3-319-52381-1_8 | spa |
dc.relation.references | Akinbile, C.O.; Yusoff, M.S. (2012). Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. International Journal of Phytoremediation 14(3) 201-11. http://dx.doi.org/10.1080/15226514.2011.587482 | spa |
dc.relation.references | Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., Abdel-DAIM, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 12(5), 1927. https://doi.org/10.3390/su12051927 | spa |
dc.relation.references | Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002. | spa |
dc.relation.references | Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886. https://doi.org/10.1590/0104-6632.20140314s00002734 | spa |
dc.relation.references | Carhuaricra, F. (2019). Fitoremediación por el proceso de fitodegradación con dos especies de macrófitas acuáticas, Limnobium laevigatum y Eichornia crassipes para el tratamiento de aguas residuales domésticas de la laguna facultativa en la localidad de Pacayampa, Distrito de Santa maría del Valle (Huanuco), agosto – septiembre 2018. Universidad de Huanuco. http://localhost:8080/xmlui/handle/123456789/1598 | spa |
dc.relation.references | Castillo, L. T. C., & Acosta, L. D. C. M. (2019). Determination of the Degree of Heavy Metals Accumulation in Macrophytes of Bogotá River, Colombia. Chemical Engineering Transactions, 74, 259-264. https://doi.org/10.3303/CET1974044 | spa |
dc.relation.references | Chandra, R., Saxena, G., & Kumar, V. (2015). Phytoremediation of Environmental Pollutants: An Eco-Sustainable Green Technology to Environmental Management. En Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press. http://dx.doi.org/10.1201/b18218-2 | spa |
dc.relation.references | Chua, J., Banua, J. M., Arcilla, I., Orbecido, A., de Castro, M. E., Ledesma, N., Deocaris, C., Madrazo, C., & Belo, L. (2019). Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon, 5(9), e02440. https://doi.org/10.1016/j.heliyon.2019.e02440. | spa |
dc.relation.references | Dhir, B. (2013a). Aquatic Plant Species and Removal of Contaminants. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 21-50). Springer. https://doi.org/10.1007/978-81-322-1307-9_2 | spa |
dc.relation.references | Dhir, B. (2013b). Future Prospects. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 95-106). Springer. https://doi.org/10.1007/978-81-322-1307-9_5 | spa |
dc.relation.references | Dhir, B. (2013c). Introduction. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 1-20). Springer. https://doi.org/10.1007/978-81-322-1307-9_1 | spa |
dc.relation.references | Dhir, B. (2013d). Mechanism of Removal of Contaminants by Aquatic Plants. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 51-64). Springer. https://doi.org/10.1007/978-81-322-1307-9_3 | spa |
dc.relation.references | Dhir, B. (2013e). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer. https://doi.org/10.1007/978-81-322-1307-9 | spa |
dc.relation.references | Dhir, B. (2013f). Role of Wetlands. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 65-93). Springer. https://doi.org/10.1007/978-81-322-1307-9_4. | spa |
dc.relation.references | Ebel, M.; Evangelou, M.W.; Schaeffer, A. (2007). Cyanide phytoremediation by water hyacinths Eichhornia crassipes). Chemosphere 66, 816–823. http://dx.doi.org/10.1016/j.chemosphere.2006.06.041 | spa |
dc.relation.references | Fletcher, J., Willby, N., Oliver, D. M., & Quilliam, R. S. (2020). Phytoremediation Using Aquatic Plants. En B. R. Shmaefsky (Ed.), Phytoremediation: In-situ Applications (pp. 205-260). Springer International Publishing. https://doi.org/10.1007/978-3-030-00099-8_7 | spa |
dc.relation.references | Grajales, H., Aguirre, N. J., Toro, F. M., Marxsen, J., & Pohlon, E. (2020). Root-associated biofilms of Eichhornia heterosperma Alexander, 1939 contribute to the remediation of the tropical reservoir Porce II, Colombia. Limnologica, 80, 125745. https://doi.org/10.1016/j.limno.2019.125745 | spa |
dc.relation.references | Hadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734 | spa |
dc.relation.references | Hanafiah, M. M., Zainuddin, M. F., Mohd Nizam, N. U., Halim, A. A., & Rasool, A. (2020). Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Applied Sciences, 10(9), 3064. https://doi.org/10.3390/app10093064 | spa |
dc.relation.references | Henry-Silva, G. G., & Camargo, A. F. M. (2006). Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Scientia Agricola, 63, 433-438. https://doi.org/10.1590/S0103-90162006000500003 | spa |
dc.relation.references | Irigoven P., G. (2001). Evaluación de la bioacumulación de bario, cromo, níquel y zinc en las macrofitas acuaticas «pistia stratiotes» y «eichhornia crassipes» de la laguna de Limoncocha. http://localhost:8080/xmlui/handle/123456789/2282 | spa |
dc.relation.references | Jaramillo Jumbo, M. D. C., & Flores Campoverde, E. D. (2012). Fitorremediación mediante el uso de dos especies vegetales Lemna minor (Lenteja de agua), y Eichornia crassipes (Jacinto de agua) en aguas residuales producto de la actividad minera. [Trabajo de grado, Universidad Politécnica Salesiana]. Repositorio. http://dspace.ups.edu.ec/handle/123456789/2939 | spa |
dc.relation.references | Khellaf, N., Djelal, H., & Amrane, A. (2022). An Overview of the Valorization of Aquatic Plants in Effluent Depuration through Phytoremediation Processes. Applied Microbiology, 2(2), 309-318. https://doi.org/10.3390/applmicrobiol2020023 | spa |
dc.relation.references | Kumar, V., Singh, J., Saini, A., & Kumar, P. (2019). Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environmental Sustainability, 2(1), 55-65. https://doi.org/10.1007/s42398-019-00050-8. | spa |
dc.relation.references | Le, P.T.T.; Boyd, C.E. (2012). Comparison of phenate and salicylate methods for determination of total ammonia nitrogen in freshwater and saline water. J. World Aquacult. Soc. 43, 885–889. https://doi.org/10.1111/j.1749-7345.2012.00616.x | spa |
dc.relation.references | Mahfooz, Y., Yasar, A., Islam, Q. U., Rasheed, R., Naeem, U., & Mukhtar, S. (2021). Field testing phytoremediation of organic and inorganic pollutants of sewage drain by bacteria assisted water hyacinth. International Journal of Phytoremediation, 23(2), 139-150. https://doi.org/10.1080/15226514.2020.1802574 | spa |
dc.relation.references | Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130 | spa |
dc.relation.references | Matute, S., Capote, T., Montilla, M. N., Padrón, D., & Iglesias, P. (2014). Absorción de hierro total en plantas acuaticas como fitorremediadora en aguas residuales industriales. Agroindustria, Sociedad y Ambiente, 1(2), 39-51. https://revistas.uclave.org/index.php/asa/article/view/3533. | spa |
dc.relation.references | Mokhtar, H.; Morad, N.; Fizri, F.F.A. (2011). Phytoaccumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. International Journal of Environmental Science and Development, 2(3), 205-210. http://www.ijesd.org/papers/125-S067.pdf | spa |
dc.relation.references | Mohd Nizam, N. U., Mohd Hanafiah, M., Mohd Noor, I., & Abd Karim, H. I. (2020). Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater. Applied Sciences, 10(8), 2712. https://doi.org/10.3390/app10082712 | spa |
dc.relation.references | Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009 | spa |
dc.relation.references | Núñez, S. E. R., Negrete, J. L. M., Rios, J. E. A., Hadad, H. R., & Maine, M. A. (2011). Hg, Cu, Pb, Cd, and Zn Accumulation in Macrophytes Growing in Tropical Wetlands. Water, Air, & Soil Pollution, 216(1), 361-373. https://doi.org/10.1007/s11270-010-0538-2 | spa |
dc.relation.references | Rahman, R. A., Wintoko, J., & Prasetya, A. (2022). Comparison of different phytoremediation strategies for acid mine drainage (AMD). IOP Conference Series: Earth and Environmental Science, 963(1), 012040. https://doi.org/10.1088/1755-1315/963/1/012040 | spa |
dc.relation.references | Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S. E., Md Din, M. F., Taib, S. M., Sabbagh, F., & Sairan, F. M. (2015a). Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 163, 125-133. https://doi.org/10.1016/j.jenvman.2015.08.018 | spa |
dc.relation.references | Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S. E., Md Din, M. F., Taib, S. M., Sabbagh, F., & Sairan, F. M. (2015b). Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 163, 125-133. https://doi.org/10.1016/j.jenvman.2015.08.018 | spa |
dc.relation.references | Rizwana, M., Darshan, M., & Nilesh, D. (2014). Phytoremediation of Textile Waste Water Using Potential Wetland Plant: Eco Sustainable Approach. International Journal of Interdisciplinary and Multidisciplinary Studies (IJIMS). 1(4). 130-138. https://www.ijims.com/uploads/afd0b59bb493a3f8dae32014421.pdf | spa |
dc.relation.references | Rodríguez, J., & Alexander, J. (2021). Eichhornia crassipes y su uso en técnicas de aprovechamiento y fitorremediación de cuerpos de agua. [Trabajo de grado, Universidad Nacional Abierta y a Distancia UNAD]. Repositorio. http://repository.unad.edu.co/handle/10596/40340 | spa |
dc.relation.references | Sallah-Ud-Din, R., Farid, M., Saeed, R., Ali, S., Rizwan, M., Tauqeer, H. M., & Bukhari, S. A. H. (2017). Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environmental Science and Pollution Research, 24(21), 17669-17678. https://doi.org/10.1007/s11356-017-9290-0 | spa |
dc.relation.references | Sharma, P., Tripathi, S., Purchase, D., & Chandra, R. (2021). Integrating phytoremediation into treatment of pulp and paper industry wastewater: Field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy. Journal of Environmental Chemical Engineering, 9(4), 105547. https://doi.org/10.1016/j.jece.2021.105547 | spa |
dc.relation.references | Sidek, N. M., Abdullah, S. R. S., Ahmad, N. ’Uyun, Draman, S. F. S., Rosli, M. M. M., & Sanusi, M. F. (2018). Phytoremediation Of Abandoned Mining Lake By Water Hyacinth And Water Lettuces In Constructed Wetlands. Jurnal Teknologi, 80(5), Article 5. https://doi.org/10.11113/jt.v80.10992 | spa |
dc.relation.references | Singh, D., Gupta, R., & Tiwari, A. (2011). Phytoremediation Of Lead From Wastewater Using Aquatic Plants. International Journal of Biomedical Research, 2(7), 411-421. https://doi.org/10.7439/ijbr.v2i7.124 | spa |
dc.relation.references | Sun, H., Wang, Z., Gao, P., & Liu, P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, 35(2), 355-364. https://doi.org/10.1007/s11738-012-1078-8 | spa |
dc.relation.references | Türker, O. C., Böcük, H., & Yakar, A. (2013). The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. Journal of hazardous materials, 252, 132-141. https://doi.org/10.1016/j.jhazmat.2013.02.032 | spa |
dc.relation.references | Wani, R., Ganai, B., Shah, M., & Baba, U. (2017). Heavy Metal Uptake Potential of Aquatic Plants through Phytoremediation Technique—A Review. Journal of Bioremediation & Biodegradation, 08. https://doi.org/10.4172/2155-6199.1000404 | spa |
dc.rights | CC0 1.0 Universal | * |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Phytoremediation | spa |
dc.subject.keyword | Eichornia | spa |
dc.subject.keyword | Lemna | spa |
dc.subject.keyword | Nitrogen | spa |
dc.subject.keyword | Iron | spa |
dc.subject.keyword | Wastewater | spa |
dc.subject.lemb | Aguas residuales - Fitorremediación | spa |
dc.subject.lemb | Tratamiento del agua | spa |
dc.subject.lemb | Ingeniería ambiental - investigaciones | spa |
dc.subject.lemb | Tesis y disertaciones académicas | spa |
dc.subject.proposal | Fitorremediacion, Eichornia, Lemna , Nitrógeno, Hierro, Agua residual | spa |
dc.subject.proposal | Fitorremediacion | spa |
dc.subject.proposal | Eichornia | spa |
dc.subject.proposal | Lemna | spa |
dc.subject.proposal | Nitrógeno | spa |
dc.subject.proposal | Hierro | spa |
dc.subject.proposal | Agua residual | spa |
dc.title | Eficacia de dos especies de macrofitas fitorremediadoras (eichornia crassipes –buchón de agua y lemna minor –lenteja de agua) en bioensayos con aguas residuales del Lago Balmoral Urbano, Villavicencio | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2023kiarapalomino.pdf
- Tamaño:
- 1.3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2023kiarapalomino1..pdf
- Tamaño:
- 475.84 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización Facultad

- Nombre:
- 2023kiarapalomino2.pdf
- Tamaño:
- 468.73 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Derechos de Autor
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: