Eficacia de dos especies de macrofitas fitorremediadoras (eichornia crassipes –buchón de agua y lemna minor –lenteja de agua) en bioensayos con aguas residuales del Lago Balmoral Urbano, Villavicencio

dc.contributor.advisorVelosa Caicedo, Rodrigo Isaac
dc.contributor.authorPalomino Peredo, Kiara Margarita
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001057120spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es&user=yQnEuEQAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0003-4316-1405spa
dc.coverage.campusCRAI-USTA Villavicenciospa
dc.date.accessioned2023-03-23T22:55:50Z
dc.date.available2023-03-23T22:55:50Z
dc.date.issued2022-10-10
dc.descriptionEl déficit de fuentes de agua limpias dada la presencia de contaminantes en el agua es una problemática ambiental no solo de nivel local, sino también regional y nacional en Colombia. Para contrarestar este problema, se han implementado diferentes sistemas de tratamiento de aguas incluyendo la fitoremediación. La intención de este estudio fue la de evaluar la capacidad fitoremediadora de dos especies de plantas acuáticas –Eichornia crassipes y Lemna minor – para remover dos contaminantes –nitrógeno amoniacal N-NH3 y hierro total Fe – a partir de aguas residuales del lago Balmoral producto de la actividad agroforestal y ganadera en áreas vecinas. A partir de muestras de agua residual, se realizó el montaje de 2 bioensayos, uno con 100 g de E. crassipes y otro con 20 g de L.minor, y se realizaron mediciones de los dos contaminantes cada 4-5 días por espacio de 1 mes. Adicionalmente, se estableció el grado de absorción de los 2 contaminantes a partir de la raíz de E. crassipes y hojas de L. minor por medio de la maceración de las partes de las plantas al inicio y al final de los bioensayos. Los resultados obtenidos resaltan en Eichornia crassipes su capacidad de absorción y acumulación de contaminantes (56.5% de N-NH3 y 47.1% de Fe total), y su alta reducción y remoción en el agua residual (95% de N-NH3 y 75.9% de Fe Total). Por el contrario, Lemna minor no fue en este estudio una planta eficiente en la reducción y remoción de contaminantes del agua residual (0.45% de N-NH3 y 45% de Fe total), con baja capacidad de bioacumulación (26.7% de N-NH3 y 11.3% de Fe total). Se destaca la alta capacidad fitoremediadora de E. crassipes similar a la reportada en otros estudios. Se realizan algunas recomendaciones para la implementación de un sistema de fitoremediación con macrófitas acuáticas en el lago Balmoral.spa
dc.description.abstractThe deficit of clean water sources due to the presence of contaminants in the water is an environmental problem not only at the local level, but also at the regional and national level in Colombia. To counteract this problem, different water treatment systems have been implemented, including phytoremediation. The intention of this study was to evaluate the phytoremediation capacity of two species of aquatic plants – Eichornia crassipes and Lemna minor – to remove two contaminants –ammoniacal nitrogen N-NH3 and total iron Fe – from Balmoral Lake wastewater, product of agroforestry and livestock activity in neighboring areas. From residual water samples, 2 bioassays were set up, one with 100 g of E. crassipes and the other with 20 g of L. minor, and measurements of the two contaminants were made every 4-5 days for a period of 1 month. Additionally, the degree of absorption of the 2 contaminants from the root of E. crassipes and leaves of L. minor was established by maceration of the plant parts at the beginning and at the end of the bioassays. The results obtained highlight in Eichornia crassipes its capacity for absorption and accumulation of pollutants (56.5% of N-NH3 and 47.1% of total Fe), and its high reduction and removal in wastewater (95% of N-NH3 and 75.9% Total Fe). On the contrary, Lemna minor was not in this study an efficient plant in the reduction and removal of pollutants from wastewater (0.45% of N-NH3 and 45% of total Fe), with low bioaccumulation capacity (26.7% of N- NH3 and 11.3% of total Fe). The high phytoremediation capacity of E. crassipes is outstanding, which is similar to that reported in other studies. Some recommendations are made for the implementation of a phytoremediation system with aquatic macrophytes in Lake Balmoral.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.description.domainhttp://www.ustavillavicencio.edu.co/home/index.php/unidades/extension-y-proyeccion/investigacionspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPalomino Peredo, K. (2022). Eficacia de dos especies de macrofitas fitorremediadoras (eichornia crassipes –buchón de agua y lemna minor –lenteja de agua) en bioensayos con aguas residuales del Lago Balmoral Urbano, Villavicencio. [Trabajo de grado, Universidad Santo Tomás]. Repositoriospa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/50023
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.relation.referencesAkhtar, A.B.T.; Yasar, A.; Ali, R.; Irfan, R. (2017). Phytoremediation using aquatic macrophytes. In Phytoremediation; Ansari, A., Gill, S., Gill, R.R., Lanza, G., Newman, L., Eds.; Springer: Cham, Switzerland, pp. 259–276. https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1007/978-3-319-52381-1_8spa
dc.relation.referencesAkinbile, C.O.; Yusoff, M.S. (2012). Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. International Journal of Phytoremediation 14(3) 201-11. http://dx.doi.org/10.1080/15226514.2011.587482spa
dc.relation.referencesAli, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., Abdel-DAIM, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 12(5), 1927. https://doi.org/10.3390/su12051927spa
dc.relation.referencesAnsari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002.spa
dc.relation.referencesAurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886. https://doi.org/10.1590/0104-6632.20140314s00002734spa
dc.relation.referencesCarhuaricra, F. (2019). Fitoremediación por el proceso de fitodegradación con dos especies de macrófitas acuáticas, Limnobium laevigatum y Eichornia crassipes para el tratamiento de aguas residuales domésticas de la laguna facultativa en la localidad de Pacayampa, Distrito de Santa maría del Valle (Huanuco), agosto – septiembre 2018. Universidad de Huanuco. http://localhost:8080/xmlui/handle/123456789/1598spa
dc.relation.referencesCastillo, L. T. C., & Acosta, L. D. C. M. (2019). Determination of the Degree of Heavy Metals Accumulation in Macrophytes of Bogotá River, Colombia. Chemical Engineering Transactions, 74, 259-264. https://doi.org/10.3303/CET1974044spa
dc.relation.referencesChandra, R., Saxena, G., & Kumar, V. (2015). Phytoremediation of Environmental Pollutants: An Eco-Sustainable Green Technology to Environmental Management. En Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press. http://dx.doi.org/10.1201/b18218-2spa
dc.relation.referencesChua, J., Banua, J. M., Arcilla, I., Orbecido, A., de Castro, M. E., Ledesma, N., Deocaris, C., Madrazo, C., & Belo, L. (2019). Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon, 5(9), e02440. https://doi.org/10.1016/j.heliyon.2019.e02440.spa
dc.relation.referencesDhir, B. (2013a). Aquatic Plant Species and Removal of Contaminants. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 21-50). Springer. https://doi.org/10.1007/978-81-322-1307-9_2spa
dc.relation.referencesDhir, B. (2013b). Future Prospects. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 95-106). Springer. https://doi.org/10.1007/978-81-322-1307-9_5spa
dc.relation.referencesDhir, B. (2013c). Introduction. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 1-20). Springer. https://doi.org/10.1007/978-81-322-1307-9_1spa
dc.relation.referencesDhir, B. (2013d). Mechanism of Removal of Contaminants by Aquatic Plants. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 51-64). Springer. https://doi.org/10.1007/978-81-322-1307-9_3spa
dc.relation.referencesDhir, B. (2013e). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer. https://doi.org/10.1007/978-81-322-1307-9spa
dc.relation.referencesDhir, B. (2013f). Role of Wetlands. En B. Dhir (Ed.), Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up (pp. 65-93). Springer. https://doi.org/10.1007/978-81-322-1307-9_4.spa
dc.relation.referencesEbel, M.; Evangelou, M.W.; Schaeffer, A. (2007). Cyanide phytoremediation by water hyacinths Eichhornia crassipes). Chemosphere 66, 816–823. http://dx.doi.org/10.1016/j.chemosphere.2006.06.041spa
dc.relation.referencesFletcher, J., Willby, N., Oliver, D. M., & Quilliam, R. S. (2020). Phytoremediation Using Aquatic Plants. En B. R. Shmaefsky (Ed.), Phytoremediation: In-situ Applications (pp. 205-260). Springer International Publishing. https://doi.org/10.1007/978-3-030-00099-8_7spa
dc.relation.referencesGrajales, H., Aguirre, N. J., Toro, F. M., Marxsen, J., & Pohlon, E. (2020). Root-associated biofilms of Eichhornia heterosperma Alexander, 1939 contribute to the remediation of the tropical reservoir Porce II, Colombia. Limnologica, 80, 125745. https://doi.org/10.1016/j.limno.2019.125745spa
dc.relation.referencesHadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734spa
dc.relation.referencesHanafiah, M. M., Zainuddin, M. F., Mohd Nizam, N. U., Halim, A. A., & Rasool, A. (2020). Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Applied Sciences, 10(9), 3064. https://doi.org/10.3390/app10093064spa
dc.relation.referencesHenry-Silva, G. G., & Camargo, A. F. M. (2006). Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Scientia Agricola, 63, 433-438. https://doi.org/10.1590/S0103-90162006000500003spa
dc.relation.referencesIrigoven P., G. (2001). Evaluación de la bioacumulación de bario, cromo, níquel y zinc en las macrofitas acuaticas «pistia stratiotes» y «eichhornia crassipes» de la laguna de Limoncocha. http://localhost:8080/xmlui/handle/123456789/2282spa
dc.relation.referencesJaramillo Jumbo, M. D. C., & Flores Campoverde, E. D. (2012). Fitorremediación mediante el uso de dos especies vegetales Lemna minor (Lenteja de agua), y Eichornia crassipes (Jacinto de agua) en aguas residuales producto de la actividad minera. [Trabajo de grado, Universidad Politécnica Salesiana]. Repositorio. http://dspace.ups.edu.ec/handle/123456789/2939spa
dc.relation.referencesKhellaf, N., Djelal, H., & Amrane, A. (2022). An Overview of the Valorization of Aquatic Plants in Effluent Depuration through Phytoremediation Processes. Applied Microbiology, 2(2), 309-318. https://doi.org/10.3390/applmicrobiol2020023spa
dc.relation.referencesKumar, V., Singh, J., Saini, A., & Kumar, P. (2019). Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environmental Sustainability, 2(1), 55-65. https://doi.org/10.1007/s42398-019-00050-8.spa
dc.relation.referencesLe, P.T.T.; Boyd, C.E. (2012). Comparison of phenate and salicylate methods for determination of total ammonia nitrogen in freshwater and saline water. J. World Aquacult. Soc. 43, 885–889. https://doi.org/10.1111/j.1749-7345.2012.00616.xspa
dc.relation.referencesMahfooz, Y., Yasar, A., Islam, Q. U., Rasheed, R., Naeem, U., & Mukhtar, S. (2021). Field testing phytoremediation of organic and inorganic pollutants of sewage drain by bacteria assisted water hyacinth. International Journal of Phytoremediation, 23(2), 139-150. https://doi.org/10.1080/15226514.2020.1802574spa
dc.relation.referencesMarrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130spa
dc.relation.referencesMatute, S., Capote, T., Montilla, M. N., Padrón, D., & Iglesias, P. (2014). Absorción de hierro total en plantas acuaticas como fitorremediadora en aguas residuales industriales. Agroindustria, Sociedad y Ambiente, 1(2), 39-51. https://revistas.uclave.org/index.php/asa/article/view/3533.spa
dc.relation.referencesMokhtar, H.; Morad, N.; Fizri, F.F.A. (2011). Phytoaccumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. International Journal of Environmental Science and Development, 2(3), 205-210. http://www.ijesd.org/papers/125-S067.pdfspa
dc.relation.referencesMohd Nizam, N. U., Mohd Hanafiah, M., Mohd Noor, I., & Abd Karim, H. I. (2020). Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater. Applied Sciences, 10(8), 2712. https://doi.org/10.3390/app10082712spa
dc.relation.referencesMustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009spa
dc.relation.referencesNúñez, S. E. R., Negrete, J. L. M., Rios, J. E. A., Hadad, H. R., & Maine, M. A. (2011). Hg, Cu, Pb, Cd, and Zn Accumulation in Macrophytes Growing in Tropical Wetlands. Water, Air, & Soil Pollution, 216(1), 361-373. https://doi.org/10.1007/s11270-010-0538-2spa
dc.relation.referencesRahman, R. A., Wintoko, J., & Prasetya, A. (2022). Comparison of different phytoremediation strategies for acid mine drainage (AMD). IOP Conference Series: Earth and Environmental Science, 963(1), 012040. https://doi.org/10.1088/1755-1315/963/1/012040spa
dc.relation.referencesRezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S. E., Md Din, M. F., Taib, S. M., Sabbagh, F., & Sairan, F. M. (2015a). Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 163, 125-133. https://doi.org/10.1016/j.jenvman.2015.08.018spa
dc.relation.referencesRezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S. E., Md Din, M. F., Taib, S. M., Sabbagh, F., & Sairan, F. M. (2015b). Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 163, 125-133. https://doi.org/10.1016/j.jenvman.2015.08.018spa
dc.relation.referencesRizwana, M., Darshan, M., & Nilesh, D. (2014). Phytoremediation of Textile Waste Water Using Potential Wetland Plant: Eco Sustainable Approach. International Journal of Interdisciplinary and Multidisciplinary Studies (IJIMS). 1(4). 130-138. https://www.ijims.com/uploads/afd0b59bb493a3f8dae32014421.pdfspa
dc.relation.referencesRodríguez, J., & Alexander, J. (2021). Eichhornia crassipes y su uso en técnicas de aprovechamiento y fitorremediación de cuerpos de agua. [Trabajo de grado, Universidad Nacional Abierta y a Distancia UNAD]. Repositorio. http://repository.unad.edu.co/handle/10596/40340spa
dc.relation.referencesSallah-Ud-Din, R., Farid, M., Saeed, R., Ali, S., Rizwan, M., Tauqeer, H. M., & Bukhari, S. A. H. (2017). Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environmental Science and Pollution Research, 24(21), 17669-17678. https://doi.org/10.1007/s11356-017-9290-0spa
dc.relation.referencesSharma, P., Tripathi, S., Purchase, D., & Chandra, R. (2021). Integrating phytoremediation into treatment of pulp and paper industry wastewater: Field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy. Journal of Environmental Chemical Engineering, 9(4), 105547. https://doi.org/10.1016/j.jece.2021.105547spa
dc.relation.referencesSidek, N. M., Abdullah, S. R. S., Ahmad, N. ’Uyun, Draman, S. F. S., Rosli, M. M. M., & Sanusi, M. F. (2018). Phytoremediation Of Abandoned Mining Lake By Water Hyacinth And Water Lettuces In Constructed Wetlands. Jurnal Teknologi, 80(5), Article 5. https://doi.org/10.11113/jt.v80.10992spa
dc.relation.referencesSingh, D., Gupta, R., & Tiwari, A. (2011). Phytoremediation Of Lead From Wastewater Using Aquatic Plants. International Journal of Biomedical Research, 2(7), 411-421. https://doi.org/10.7439/ijbr.v2i7.124spa
dc.relation.referencesSun, H., Wang, Z., Gao, P., & Liu, P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, 35(2), 355-364. https://doi.org/10.1007/s11738-012-1078-8spa
dc.relation.referencesTürker, O. C., Böcük, H., & Yakar, A. (2013). The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. Journal of hazardous materials, 252, 132-141. https://doi.org/10.1016/j.jhazmat.2013.02.032spa
dc.relation.referencesWani, R., Ganai, B., Shah, M., & Baba, U. (2017). Heavy Metal Uptake Potential of Aquatic Plants through Phytoremediation Technique—A Review. Journal of Bioremediation & Biodegradation, 08. https://doi.org/10.4172/2155-6199.1000404spa
dc.rightsCC0 1.0 Universal*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordPhytoremediationspa
dc.subject.keywordEichorniaspa
dc.subject.keywordLemnaspa
dc.subject.keywordNitrogenspa
dc.subject.keywordIronspa
dc.subject.keywordWastewaterspa
dc.subject.lembAguas residuales - Fitorremediaciónspa
dc.subject.lembTratamiento del aguaspa
dc.subject.lembIngeniería ambiental - investigacionesspa
dc.subject.lembTesis y disertaciones académicasspa
dc.subject.proposalFitorremediacion, Eichornia, Lemna , Nitrógeno, Hierro, Agua residualspa
dc.subject.proposalFitorremediacionspa
dc.subject.proposalEichorniaspa
dc.subject.proposalLemnaspa
dc.subject.proposalNitrógenospa
dc.subject.proposalHierrospa
dc.subject.proposalAgua residualspa
dc.titleEficacia de dos especies de macrofitas fitorremediadoras (eichornia crassipes –buchón de agua y lemna minor –lenteja de agua) en bioensayos con aguas residuales del Lago Balmoral Urbano, Villavicenciospa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2023kiarapalomino.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2023kiarapalomino1..pdf
Tamaño:
475.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización Facultad
Thumbnail USTA
Nombre:
2023kiarapalomino2.pdf
Tamaño:
468.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Derechos de Autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: