Análisis In Vitro de la precisión de ajuste de pilares fabricados por Técnica de Adición y Sustracción sobre Implantes, comparación de microfiltración

dc.contributor.advisorRugeles Páez, Nohora Camila
dc.contributor.authorMora Fernández, Dayana Andrea
dc.contributor.authorTapias Devia, María Fernanda
dc.contributor.authorTorres Navarro, Diana Gisela
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2023-03-30T19:15:15Z
dc.date.available2023-03-30T19:15:15Z
dc.date.issued2023-03-30
dc.descriptionIntroduccion La literatura revela una alta tasa de éxito en implantes dentales como opción de tratamiento, a largo plazo, en la rehabilitación de dientes perdidos. Sin embargo, aun cuando se evidencian buenos resultados, pueden presentarse diferentes factores que influyen en la perdida ósea marginal del implante, entre los que se encuentran el diseño del implante, intercambios de plataforma, tratamiento de superficie, el tipo de conexión implante-pilar y la formación de biopelícula en el micro-gap en la interfaz implante-pilar. Objetivo Analizar la precisión de los pilares fabricados, con tecnología CAD/CAM, mediante la técnica de adición y sustracción correspondientes a procesos de sinterización laser y maquinado. Materiales y método: El diseño metodológico será experimental in vitro, debido a que es necesario la manipulación intencional de las variables. La muestra se encuentra conformada por dieciocho (18) implantes de conexión hexagonal interna, de los cuales 6 abutment son fabricados por medio de CAD/CAM y posterior proceso de sinterizado laser, 6 abutments fabricados por medio de CAD/CAM y posterior proceso de Maquinado y 6 abutments de la casa comercial Bio-horizons. Resultados: se observaron los pilares una vez sumergidos en azul de metileno, donde se pudo determinar que 12 (66,7%) de los pilares de la muestra no presentaron filtración, de los cuales cinco (41,7%) corresponden al grupo de los pilares prefabricados, cuatro (33,3%) al grupo de los pilares maquinados y, por último, tres (25%) de los pilares pertenecen al grupo de sinterizados por láser. Con respecto a los pilares que presentaron filtración se evidencio que tres (50%) corresponden a los pilares que se fabricaron por la técnica de sinterizado por láser, dos (33.3%) hacían parte del grupo de pilares maquinados y tan solo uno (16,7) correspondió al grupo de prefabricados. Los datos se evaluaron mediante la prueba estadística de Exacto de Fisher y es importante resaltar que no se evidenciaron diferencias estadísticamente significativas. Conclusiones: Al analizar la precisión de los pilares fabricados, con tecnología CAD/CAM, mediante la técnica de adición y sustracción correspondientes a procesos de sinterización laser y maquinado, se logra concluir que tuvo mejor comportamiento, en lo que a filtración respecta, el pilar de titanio maquinado que el de cromo-cobalto realizado mediante sintetización laser, sin presentar diferencias estadísticamente significativasspa
dc.description.abstractIntroduction The literature reveals a high success rate for dental implants as a long-term treatment option for the rehabilitation of missing teeth. However, even when good results are shown, different factors may influence the marginal bone loss of the implant, among which are the design of the implant, platform exchanges, surface treatment, the type of implant-abutment connection and biofilm formation in the micro-gap at the implant-abutment interface. Objective Analyze the precision of the manufactured pillars, with CAD/CAM technology, using the addition and subtraction technique corresponding to laser sintering and machining processes. Materials and method: The methodological design will be experimental in vitro, because the intentional manipulation of the variables is necessary. The sample is made up of eighteen (18) internal hexagonal connection implants, of which 6 abutments are manufactured by means of CAD/CAM and a subsequent laser sintering process, 6 abutments manufactured by means of CAD/CAM and a subsequent machining process. and 6 abutments of the commercial house Bio-horizons. Results: the pillars were observed once submerged in methylene blue, where it was possible to determine that 12 (66.7%) of the pillars in the sample did not present filtration, of which five (41.7%) correspond to the group of the precast pillars, four (33.3%) to the group of machined pillars and, finally, three (25%) of the pillars belong to the group of laser sintered ones. Regarding the pillars that presented leakage, it was evidenced that three (50%) correspond to the pillars that were manufactured by the laser sintering technique, two (33.3%) were part of the group of machined pillars and only one (16, 7) corresponded to the precast group. The data was evaluated using the Fisher's exact statistical test and it is important to highlight that no statistically significant differences were found. Conclusions: When analyzing the precision of the manufactured pillars, with CAD/CAM technology, by means of the addition and subtraction technique corresponding to laser sintering and machining processes, it is possible to conclude that the pillar had a better performance, in terms of filtration. of machined titanium than that of chromium-cobalt made by laser synthesis, without presenting statistically significant differencesspa
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en Rehabilitación Oralspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMora Fernández, D. A. Torres Navarro, D. G. Tapias Devia, M.F. (2023). Análisis In Vitro de la precisión de ajuste de pilares fabricados por Técnica de Adición y Sustracción sobre Implantes, comparación de microfiltración. [ Tesis de posgrado ]. Universidad Santo Tomas. Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/50094
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Odontologíaspa
dc.publisher.programEspecialización Rehabilitación Oralspa
dc.relation.references1. Eklund S. Trends in dental treatment, 1992 to 2007. Journal of the American Dental Association. 2010 April; 141(4): p. 391-399.spa
dc.relation.references2. Patel P, Lynch C, Sloan A, Gilmour A. Treatment planning for replacing missing teeth in UK general dental practice: Current trends. Journal of Oral Rehabilitation. 2010 July; 37(7): p. 509-517.spa
dc.relation.referencesBranemark PI, Zarb G, Albrektsson T. Prótesis tejido-integradas. La oseointegracion en odontología clínica. Primera ed. Barcelona, España: Quintessence Pub Co; 1987.spa
dc.relation.references4. Jemt T. Modified single and short-span restorations supported by osseointegrated fixtures in the partially edentulous jaw. The Journal of Prosthetic Dentistry. 1986 February; 55(22): p. 243-247.spa
dc.relation.references5. Howe M, Keys W, Richards D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. Journal of Dentistry. 2019 May; 84: p. 9-21.spa
dc.relation.references6. Walker-Finch K, Ucer C. Five-year survival rates for implants placed using digitally-designed static surgical guides: a systematic review. British Journal of Oral and Maxillofacil Surgery. 2020 April; 58(3): p. 268-276.spa
dc.relation.references7. Buser D, Janner S, Wittneben J, Brägger U, Ramseier C, Salvi G. 10-Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid-Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients. Clinical Implant Dentistry and Related Research. 2012 December; 14(6): p. 839-851.spa
dc.relation.references8. Rosa E, Deliberador T, De Lima Do Nascimento T, Kintopp C, Orsi J, Wambier L, et al. Does the implant-abutment interface interfere on marginal bone loss? A systematic review and meta-analysis. Brazilian Oral Research. 2019 June; 33: p. 1-23.spa
dc.relation.references9. Pedrazzi V, Ribeiro R, Do Nascimento C, Miani P, Gonçalves R, Ribeiro R, et al. Leakage of Saliva Through the Implant-Abutment interface: in vitro evaluation of three different implant connections under unloaded and loaded conditions. The International Journal of Oral & Maxillofacial Implants. 2012 Mayo; 27(3): p. 551-560.spa
dc.relation.references10. Nascimento C, Barbosa R, Issa J, Watanabe E, Ito I, Albuquerque R. Bacterial leakage along the implant-abutment interface of premachined or cast components. International Journal of Oral an Maxillofacial Surgery. 2008 February; 37(2): p. 177-180.spa
dc.relation.references11. Aloise J, Curcio R, Zorello M, Rossi L, Madeira A, Rapoport A. Microbial leakage through the implant-abutment interface of morse taper implants in vitro. Clinical Oral Implants Research. 2010 March; 21(3): p. 328-335.spa
dc.relation.references12. Sasada Y, Cochran D. Implant-Abutment Connections: A Review of Biologic Consequences and Peri-implantitis Implications. The International Journal of Oral & Maxillofacial Implants. 2017 December; 32(6): p. 1296-1307.spa
dc.relation.references13. Hermann J, Buser D, Schenk R, Cochran D. Crestal Bone Changes Around Titanium Implants. A Histometric Evaluation of Unloaded Non-Submerged and Submerged Implants in the Canine Mandible. Journal of Periodontology. 2000 September; 71(9): p. 1412-1424.spa
dc.relation.references14. Yi Y, Heo S, Koak J, Kim S. Comparison of CAD/CAM abutment and prefabricated abutment in Morse taper internal type implant after cyclic loading: Axial displacement, removal torque, and tensile removal force. Journal of Advanced Prosthodontics. 2019 December; 11(6): p. 305-312.spa
dc.relation.references15. Fuster A, Albalat S, Alcañiz M, Peñarrocha M. CAD / CAM dental systems in implant dentistry: Update. Medicina Oral, Patología Oral y Cirugía Bucal. 2009 March; 14(3): p. 141-145.spa
dc.relation.references16. Lin L, Fang Y, Liao Y, Chen G, Gao C, Zhu P. 3D Printing and Digital Processing Techniques in Dentistry: A Review of Literature. Advanced Engineering Materials. 2019 March; 21(6): p. 1-28.spa
dc.relation.references17. Sbordone L, Bortolaia C. Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clinical Oral Investigations. 2003 November; 7(4): p. 181-188.spa
dc.relation.references18. Größner B, Teichmann J, Hannig M, Dörfer C, Wenderoth D, Ott S. Modified implant surfaces show different biofilm compositions under in vivo conditions. Clinical Oral Implants Research. 2009 July; 20(8): p. 817-826.spa
dc.relation.references19. Gratton D, Aquilino S, Stanford C. Micromotion and dynamic fatigue properties of the dental implant–abutment interface. The Journal of Prosthetic Dentistry. 2001 January; 85(1).spa
dc.relation.references20. Lee A, Wang H. Biofilm related to dental implants. Implant Dentistry. 2010 October; 19(5): p. 387-393.spa
dc.relation.references21. Zembic A, Sailer I, Jung R, Franz C. Randomized-controlled clinical trial of customized zirconia and titanium implant abutments for single-tooth implants in canine and posterior regions: 3-year results. Clinical Oral Implants Research. 2009 July; 20(8): p. 802-808.spa
dc.relation.references22. Zembic A, Bösh A, Jung R, Hämmerle C, Sailer I. Five-year results of a randomized controlled clinical trial comparing zirconia and titanium abutments supporting single-implant crowns in canine and posterior regions. Clinical Oral Implants Research. 2012 October; 24(4): p. 384-390.spa
dc.relation.references23. Kapos T, Evans C. CAD/CAM Technology for Implant Abutments, Crowns, and Superstructures. The International Journal of Oral & Maxillofacial Implants. 2014; 29(Supplement): p. 117-136.spa
dc.relation.references24. Vaidya P, Mahale S, Kale S, Patil A. Osseointegration- A Review. IOSR Journal of Dental and Medical Sciences. 2017 January; 16(01): p. 45-48.spa
dc.relation.references25. Albrektsson T, Brånemark P, Hansson H, Lindström J. Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica. 2009 July; 52(2): p. 155-170.spa
dc.relation.references26. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European Spine Journal. 2001 October; Suppl 2(Suppl 2): p. S96-101.spa
dc.relation.references27. Viggiani P, Brito F, Uzcátegui G. Estudio del Comportamiento Biomecánico de un Implante Dental Considerando Variaciones en el Hueso de Soporte. Computational Mechanics. 2014 November;: p. 1-8.spa
dc.relation.references28. Almeida E, Freitas A, Rocha E, Pessoa R, Gupta N, Tovar N, et al. Critical Aspects for Mechanical Simulation in Dental Implantology Moratal D, editor.: Finite Element Analysis: from biomedical applications to industrial developments; 2012.spa
dc.relation.references29. Smedberg J, Nilner K, Rangert B, Svensson S, Glantz S. On the influence of superstructure connection on implant preload: a methodological and clinical study. Clinical Oral Implants Research. 1996 March; 7(1): p. 55-63.spa
dc.relation.referencesDuyck J. Biomechanical characterisation of in vivo load on oral implants Lovaina, Belgium: Thesis. Katholieke Universiteit Leuven; 2000.spa
dc.relation.references31. Şahin S, Çehreli M, Yalçin E. The influence of functional forces on the biomechanics of implant-supported prostheses - A review. Journal of Dentistry. 2002 November; 30(7-8): p. 271-282.spa
dc.relation.references32. Sasaki K, Hannam A. Relationships Between the Size, Position, and Angulation of Human Jaw Muscles and Unilateral First Molar Bite Force. Journal of Dental Research. 1989 March; 68(3): p. 499-503.spa
dc.relation.references33. Jemt T, Carlsson L, Boss A, Jörneús L. In vivo load measurements on osseointegrated implants supporting fixed or removable prostheses: a comparative pilot study. The International Journal of Oral & Maxillofacial Implants. 1991 Winter; 6(4): p. 413-417.spa
dc.relation.references34. Korioth T, Chew C, Chung D. Effect of implant number on transverse bending moments during simulated unilateral loading of mandibular fixed-detachable prostheses. The Journal of Oral Implantology. 1998; XXIV(Two): p. 93-96.spa
dc.relation.references35. Binderman I. Bone and biologically compatible materials in dentistry. Current Opinions in Dentistry. 1991 December; 1(6): p. 836-840.spa
dc.relation.references36. Holmes D, Loftus J. Influence of bone quality on stress disribution for endosseous implants. The Journal of Oral Implantology. 1997; 23(3): p. 104-111.spa
dc.relation.references37. Burguete R, Johns R, King T, Patterson E. Patterson, Tightening characteristics for screwed joints in osseointegrated dental implants. The Journal of Prosthetic Dentistry. 1994 June; 71(6): p. 592-599.spa
dc.relation.references38. Raico Y, Hidalgo I, Díaz A. Diferentes sistemas de pilares protésicos sobre implantes. Revista Estomatológica Herediana. 2011 Septiembre; 21(3): p. 159-165.spa
dc.relation.references39. Holmes R, Bayne S, Holland G, Sulik W. Considerations in measurement of marginal fit. The Journal of Prosthetic Dentistry. 1989 October; 62(4): p. 405-408.spa
dc.relation.references40. Tan K, Rubenstein J, Nicholls J, Youdelis R. Three-dimensional analysis of the casting accuracy of one-piece, osseointegrated implant-retained prostheses. The International Journal of Prosthodontics. 1993 July; 6(4): p. 346-363.spa
dc.relation.references41. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. The International Journal of Oral & Maxillofacial Implants. 1991; 6(3): p. 270-276.spa
dc.relation.references42. Mawhinney J, Connolly E, Claffey N, Moran G, Polyzois L. An in vivo comparison of internal bacterial colonization in two dental implant systems: Identification of a pathogenic reservoir. Acta Odontologica Scandinavica. 2015 April; 73(3): p. 188-194.spa
dc.relation.references43. Resende C, Castro C, Pereira L, Prudente M, Zancopé K, Davi L, et al. Influence of the prosthetic index into morse taper implants on bacterial microleakage. Implant Dentistry. 2015 October; 24(5): p. 547-551.spa
dc.relation.references44. Larrucea C, Conrado A, Olivares D, Padilla C, Barrera A, Lobos O. Bacterial microleakage at the abutment-implant interface, in vitro study. Clinical Implant Dentistry and Related Research. 2018 February; 20(3): p. 360-367.spa
dc.relation.references45. Larrucea C, Jaramillo G, Acevedo A, Larrucea C. Microleakage of the prosthetic abutment/implant interface with internal and external connection: In vitro study. Clinical Oral Implants Research. 2014 July; 25(9): p. 1078-1083.spa
dc.relation.references46. Ranieri R, Ferreira A, Souza E, Arcoverde J, Dametto F, Gade-Neto C, et al. The Bacterial Sealing Capacity of Morse Taper Implant–Abutment Systems in Vitro. Journal of Periodontology. 2015 May; 86(5): p. 696-702.spa
dc.relation.references47. Baggi L, Di Girolamo M, Mirisola C, Calcaterra R. Microbiological evaluation of bacterial and mycotic seal in implant systems with different implant-abutment interfaces and closing torque values. Implant Dentistry. 2013 August; 22(4): p. 344-350.spa
dc.relation.references48. Cavusoglu Y, Akça K, Gürbüz R, Cavit M. A Pilot Study of Joint Stability at the Zirconium or Titanium Abutment/Titanium Implant Interface. The International Journal of Oral & Maxillofacial Implants. 2014 April; 29(2): p. 338-343.spa
dc.relation.references49. Gassino G, Barone S, Scanu M, Spina G, Preti G. Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. The International Journal of Prosthodontics. 2004 April; 17(2): p. 218-223.spa
dc.relation.references50. Thakur J, Parlani S, Shivakumar S, Jajoo K. Precisión del ajuste marginal de un marco soportado por implantes fabricado por impresión 3D versus técnica de fabricación sustractiva: una revisión sistemática y un metanálisis. The Journal of Prosthetic Dentistry. 2021;(21).spa
dc.relation.references51. Vizoso B. Estudio comparativo de la precisión de ajuste de pilares CAD/CAM mecanizados estándar y sinterizados láser sobre implantes con conexión externa e interna: (Tesis Doctoral). Universidad Complutense de Madrid. Madrid, España; 2018.spa
dc.relation.references52. Vizoso B. Evaluación In Vitro de la Precisión de Ajuste de Pilares sobre Implantes con Conexión Hexagonal Interna: (Trabajo de Investigación Máster en Ciencias Odontológicas). Universidad Complutense de Madrid; 2012.spa
dc.relation.references53. Kim D, Kim J, Kim H, Kim W. Comparasion and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing. Journal of Prosthodontic Research. 2018 January; 62(1): p. 56-64.spa
dc.relation.references54. Schweiger J, Güth J, Erdelt K, Edelhoff D, Schubert O. Internal porosities, retentive force, and survival of cobalt-chromium alloy clasps abricated by selective laser-sintering. Journal of Prosthodontic Research. 2020 April; 64(2): p. 210-216.spa
dc.relation.references55. Molinero P, Roccuzzo A, Yilmaz B, Hang G, Pow E, Del Río J, et al. Evaluación de microfiltraciones de pilares CAD-CAM Cobalto-Cromo y Zirconia sobre un implante dental de conexión cónica: un estudio comparativo in vitro. Clinical Oral Implants Research. 2022 Julio; 33(9): p. 945-958.spa
dc.relation.references56. Fokas G, Chronopoulos V, Janda M, Mattheos N. Differences in micromorphology of the implant-abutment junction for original and third-party abutments on a representative dental implant. The Journal of Prosthetic Dentistry. 2019 January; 121(1): p. 143-150.spa
dc.relation.references57. Molinero P, Cascos R, Yilmaz B, Hang W, Nang E, Del Río J, et al. Effect of fabrication technique on the microgap of CAD/CAM Cobalt/Chrome and Zirconia Abutments on a conical connetion implant: an In Vitro study. Materials. 2021 April; 14(9).spa
dc.relation.references58. Ortega J. Evaluación in vitro de pilares de implantes de titanio y PEEK: evaluaciones de Aflojamiento de Tornillos y Microfiltraciones Bajo Condiciones Dinámicas Pruebas Mecánicas. Revista de Odontología Protésica. 2022; 127(3): p. 470-476.spa
dc.relation.references59. Buitrago A, Sarmiento M, Serrano C, Henao S. Evaluación de la colonización bacteriana de la interfase implante-pilar en implantes de conexión interna: estudio piloto. Acta Odontológica Colombiana. 2018 Diciembre; 8(2): p. 41-51.spa
dc.relation.references60. Souza R, Barbosa I, Lattuf D, Larsson A, Nannmark U, Lauria L. In Vitro Analysis of the Implant-Abutment Interface Connection and Bacterial Infiltration in Two Extraoral Implant Models. The International Journal of Oral & Maxillofacial Implants. 2020 February; 35(1): p. 63-69.spa
dc.relation.references61. Costa G, Ferreira E, De Oliveira A, Peruzzo D, Joly J, Napimoga M. Microbiological Sealing Analysis of a Tapered Connection and External Hexagon System. International Journal of Dentistry. 2017 February; 2017.spa
dc.relation.references62. Hernández R, Fernández C, Baptista P. Metodología de la Investigación. 6th ed. México D.F.: McGraw-Hill Education; 2014.spa
dc.relation.references63. Microfiltración de la interfaz pilar protésico/implante con conexión interna y externa.in vitro estudiar.spa
dc.relation.references64. Yildirim B. Effect of porcelain firing and cementation on the marginal fit of implant-supported metal-ceramic restorations fabricated byadditive or subtractive manufacturing methods. The Journal of Prosthetic Dentistry. 2020 October; 124(4): p. 476.e1-476.e6.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordDental implantspa
dc.subject.keywordmicrofiltrationspa
dc.subject.keywordadjustmentspa
dc.subject.lembOdontología - implantesspa
dc.subject.lembDientes artificialesspa
dc.subject.lembRehabilitación oralspa
dc.subject.lembEstética dentalspa
dc.subject.proposalimplante dentalspa
dc.subject.proposalmicrofiltraciónspa
dc.subject.proposalajustespa
dc.titleAnálisis In Vitro de la precisión de ajuste de pilares fabricados por Técnica de Adición y Sustracción sobre Implantes, comparación de microfiltraciónspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Especializaciónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2023TapiasMaria.pdf
Tamaño:
4.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2023TapiasMaría1.pdf
Tamaño:
174.39 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación Facultad
Thumbnail USTA
Nombre:
2023TapiasMaría2.pdf
Tamaño:
984.49 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de Publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: