Natural lenguaje processing para la predicción de series de tiempo en el mercado de commodities energético con el uso de modelos en inteligencia artificial
dc.contributor.author | Alba Suárez, Miguel Antonio | spa |
dc.contributor.author | Pineda Ríos, Wilmer Darío | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001325299 | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001454199 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=eVxlDqUAAAAJ&hl=es | spa |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=5KmOl5oAAAAJ&hl=es | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-1481-2486 | spa |
dc.contributor.orcid | https://orcid.org/0000-0001-7774-951X | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-07-29T22:10:44Z | spa |
dc.date.available | 2020-07-29T22:10:44Z | spa |
dc.date.issued | 2020-08 | spa |
dc.description | Los negocios internacionales en los mercados financieros históricamente han venido utilizando herramientas de tipo estadístico como fundamental para describir y predecir el comportamiento de los activos financieros. Ante a realidad planteada surge en el escenario de hoy en el campo del data science, el uso de la inteligencia artificial, la cual se caracteriza en la utilizaciòn de herramientas propias del Natural Language Processing (NLP) como es el caso del análisis de texto y de sentimientos del mercado, cuyo objetivo es el de identificar, si el uso de texto en el análisis de series de tiempo resulta significativo a nivel predictivo en este tipo datos secuenciales. El trabajo propuesto tienen como objetivo predecir el comportamiento del mercado de commodities energeticoetico mediante la utilización de inteligencia artificial. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Alba, M. A., & Pineda, W. D., (S.F.) Natural lenguaje processing para la predicción de series de tiempo en el mercado de commodities energético con el uso de modelos en inteligencia artificial Bogotá: Universidad Santo Tomás | spa |
dc.identifier.doi | https://doi.org/10.15332/dt.inv.2020.01355 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/28677 | |
dc.relation.references | A. A., & A. P. (2015). Mastering probabilistic Graphial Models using Python . Birmingham B3 2PB, UK.: PACKT: publishing . Alba Acosta, M. (2018). Predictive capacity of deep learning models in cryptocurrency market analysis. | spa |
dc.relation.references | Amjad, M. (2016). Prediction, Trading Bitcoin and Online Time Series. NIPS 2016 Time Series Workshop, 55. Barcelona. Amunategui, M. (2017, 11 2). Data Exploration & Machine Learning, Hands-on. Retrieved from Convolutional Neural Networks And Unconventional Data - Predicting The Stock Market Using Images: http://amunategui.github.io/unconventional-convolutional-networks/index.html | spa |
dc.relation.references | Bontempi,G. (2013). Machine Learning Strategies for Time Series Prediction. (B. d.-C. 212, Ed.) Machine Learning Summer School (Hammamet, 2013). | spa |
dc.relation.references | Brownlee, J. (2017). Long Short-Term Memory Networks With Python: Develop Sequence Prediction Models With Deep Learning. Machine Learning Mastery. Cross Validated. (2015). A list of cost functions used in neural networks, alongside applications. Retrieved from https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications | spa |
dc.relation.references | De la Vega J & Garcia M, J. (2004). Análisis para negociar en el mercado de futuro. Estrategia Financiera, 34-41. Elidan, G. (2010). Copula bayesian networks. (H. U. Department of Statistics, Ed.) Advances in Neural Information Processing Systems, 24. | spa |
dc.relation.references | Fumo, D. (2017, June 15). https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861. Retrieved from Towards Data Science: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861 | spa |
dc.relation.references | G. I., B. Y., & C. A. (2016). Deep Learning. MIT Press. Ghahramani, Z. (1997). Learning Dynamic Bayesian Networks. Department of computer science, University of Toronto. Google. (2017). AI adventures. Retrieved from Youtube: https://www.youtube.com/channel/UCJS9pqu9BzkAMNTmzNMNhvg | spa |
dc.relation.references | H. S., & S. J. (1997, november 15). Long Short-Term Memory. Neural Computation, Volume 9(Issue 8). Heaton, J. (2013, 07). Bayesian Networks for Predictive Modeling. Forecasting & Futurism, 6. Jaakkola, T. (2006, Fall). Course materials for 6.867 Machine Learning. Document Downloaded on [11 04 2018]. Massachusetts Institute of Technology. | spa |
dc.relation.references | Jacks D., O'Rourke, K & Williamson. (2009). Coomodity price volatility an word market integration since 1700. | spa |
dc.relation.references | Jimsparkle. (2017). Understanding bitcoin market trend and feature using unsupervised Machine-Learning. Retrieved from steemit: https://steemit.com/bitcoin/@jimsparkle/understanding-bitcoin-market-trend-and-feature-using-unsupervised-machine-learning | spa |
dc.relation.references | L. F.-F., J. J., & Y. S. (2017). Lecture 10 | Recurrent Neural Networks. Recurrent Neural Networks (pp. lecture 10-22). Stanford University. LeCun, Y., B. L., B. Y., & H. P. (1998). Gradient-based learning applied to document recognition. Proc. of the IEEE. Lewis, N. (2016). DEEP TIME SERIES FORECASTING With PYTHON. | spa |
dc.relation.references | Liu, A. T. (2004). A Bayesian Network Approach to Explaining Time Series with Changing Structure. Department of Information Systems and Computing. M. L., & J. L. (2001). Recurrent neural networks (design and applications). The Mawson Lakes, SA Australia: CRC press. | spa |
dc.relation.references | Margaritis, D. (2003, may). Learning Bayesian Network Model Structure from Data. 126. Pittsburgh, PA 15213, United States: School of Computer Science, Carnegie Mellon University. | spa |
dc.relation.references | Marr, B. (2016, December 6). What Is The Difference Between Artificial Intelligence And Machine Learning? Retrieved from Forbes: https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#7c2d4aea2742 | spa |
dc.relation.references | McNally, S. (2016, 08 22). Predicting the price of Bitcoin using Machine Learning. MSc Reseach Project. Mihajlovic, & Petkovic. (2001). Dynamic Bayesian Networks: A State of the Art. CTIT Technical Report Series, 01-34. | spa |
dc.relation.references | N. G., M. M., & N. A. (2011). Characterization of Dynamic Bayesian Network The Dynamic Bayesian Network as temporal network. (IJACSA) International Journal of Advanced Computer Science and Applications,, 8. Nielsen, M. (2017). | spa |
dc.relation.references | Neural Networks and Deep Learning. Novick, P. (2011). Udacity.com. Retrieved from Intro to Artificial Intelligence: https://classroom.udacity.com/courses/cs271 Osterrieder, J. a. (2016, October 1). Bitcoin and Cryptocurrencies - Not for the Faint-Hearted. Advanced Risk & Portfolio Management Paper. | spa |
dc.relation.references | Perasso, V. (2016, 10 02). Qué es la cuarta revolución industrial (y por qué debería preocuparnos). BBC NEWS . saini, G. (2017). artificial neuron consisting of dendrites,axon and threshold function. Artificial neural network.png | spa |
dc.relation.references | Own work. SAS. (2018). Machine Learning: What it is and why it matters. Retrieved from SAS: https://www.sas.com/es_mx/insights/analytics/machine-learning.html | spa |
dc.relation.references | Scutari, M. (2015, 06). Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimised Implementations in the bnlearn R Package. Journal of Statistical Software, VV, Issue II. | spa |
dc.relation.references | Ting Yu, N. V. (2013). Computational Intelligent Data Analysis for Sustainable Development. (V. Kumar, Ed.) University of Minnesota: CRC Press. UFLDL Tutorial . (2017, 05 12). Unsupervised Feature Learning and Deep Learning tutorial. Retrieved from UFLDL stanford: http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/ | spa |
dc.relation.references | Wang, H. (2016, 04 07). Towards Bayesian Deep Learning: A Survey. (Stat.ML, Ed.) Zhou, Y. (2015, 08 08). New Techniques for Learning Parameters in Bayesian Networks. 164. Department of Computer Science. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Deep learning | spa |
dc.subject.keyword | Artificial intelligence | spa |
dc.subject.keyword | Natural Language Processing | spa |
dc.subject.keyword | Artificial neural networks | spa |
dc.subject.keyword | Finance | spa |
dc.subject.keyword | Financial market | spa |
dc.subject.keyword | Finance system | spa |
dc.subject.lemb | Finanzas | spa |
dc.subject.lemb | Mercado financiero | spa |
dc.subject.lemb | Sistema financiero | spa |
dc.subject.proposal | Inteligencia artificial | spa |
dc.subject.proposal | Natural Language Processing | spa |
dc.subject.proposal | Redes neuronales artificiales | spa |
dc.subject.proposal | Deep learning | spa |
dc.title | Natural lenguaje processing para la predicción de series de tiempo en el mercado de commodities energético con el uso de modelos en inteligencia artificial | spa |
dc.type.category | Apropiación Social y Circulación del Conocimiento: Informes finales de investigación | spa |