Acetic acid and pentane treatment by a biofiltration system based on organic beds under transient conditions

dc.contributor.authorPacheco, Maria P.spa
dc.contributor.authorRamirez, Claudiaspa
dc.contributor.authorHernandez, Mario A.spa
dc.contributor.authorCabeza, Iván O.spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001554681spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=96vN0jsAAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0001-7110-813Xspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-05-18T16:38:44Zspa
dc.date.available2020-05-18T16:38:44Zspa
dc.date.issued2019spa
dc.description.abstractAssessment of biofiltration systems under transient conditions is necessary when determining industrial operating conditions of biofiltration beds. The key system variables such as filter bed moisture content, the pollutant type and its concentration, must be evaluated in order to accurately calculate scaling of biofiltration beds. The removal efficiency of two organic volatile compounds (VOCs) was evaluated: acetic acid (hydrophilic) and pentane (hydrophobic). Two independent biofiltration systems were operated (A and B), in each system the bed packing material was the same. The filtration beds were made from compost, with the following mixtures: rice husk-chicken manure (CAS) and pruning waste-chicken manure (POD), each in a ratio of 1:1 (v:v). As part of this study, in system A, the effect of moisture on acetic acid removal efficiency was analyzed, finding that in a moisture range of 50-15% and of 50-25%, efficiencies above 90% are reached for CAS and for POD respectively. On the other hand, in system B, the performance of the biofilters was evaluated against different concentrations of pentane, resulting in removal efficiencies of 25% and 43% for POD and CAS, respectively. In general, these results indicate that there is a significant dependence between the performance of the system and the moisture content of the filter bed and the lower limit in which the bed would operate under industrial conditions is defined. The pollutant water solubility was also considered in order to define the maximum concentrations that the bed would support under transient conditions.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPacheco M.P., Ramirez C., Hernandez M.A., Cabeza I.O., 2019, Acetic Acid and Pentane Treatment by a Biofiltration System Based on Organic Beds Under Transient Conditions, Chemical Engineering Transactions, 74, 295-300.spa
dc.identifier.doihttps://doi.org/10.3303/CET1974050spa
dc.identifier.urihttp://hdl.handle.net/11634/23235
dc.relation.referencesAkdeniz, N., Janni, K.A., & Salnikov, I.A., 2011, Biofilter performance of pine nuggets and lava rock as media, Bioresource Technology, 102(8), 4974–4980. https://doi.org/10.1016/j.biortech.2011.01.058spa
dc.relation.referencesAlmarcha, D., Almarcha, M., Nadal, S., Poulssen, A., 2014, Assessment of odour and VOC depuration dfficiency of advanced biofilters in rendering, sludge composting and waste water treatment plants, Chemical Engineering Transactions, 40, 223–228. doi: 10.3303/CET1440038.spa
dc.relation.referencesAlexander, M., 2000, Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science and Technology, 34(20), 4259–4265. https://doi.org/10.1021/es001069+spa
dc.relation.referencesCabeza, I. O., López, R., Giraldez, I., Stuetz, R. M., & Díaz, M. J., 2013, Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials, Chemical Engineering Journal, 233, 149–158. https://doi.org/10.1016/j.cej.2013.08.032spa
dc.relation.referencesCheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H., Yu, G., 2016, Challenges and solutions for biofiltration of hydrophobic volatile organic compounds, Biotechnology Advances, 34(6), 1091–1102. https://doi.org/10.1016/j.biotechadv.2016.06.007spa
dc.relation.referencesForero, D. F., Peña, C. E., Acevedo, P., Hernández, M. A., & Cabeza, I. O., 2018, Biofiltration of acetic acid vapours using filtering bed compost from poultry manure - pruning residues - rice husks, Chemical Engineering Transactions, 64, 511–516. https://doi.org/10.3303/CET1864086spa
dc.relation.referencesGovind, R., & Narayan, S., 2005, Selection of bioreactor media for odor control, Biotechnology for Odor and Air Pollution Control, 3473(513), 65–100. https://doi.org/10.1007/3-540-27007-8_4spa
dc.relation.referencesGuo, H., Ling, Z. H., Cheng, H. R., Simpson, I. J., Lyu, X. P., Wang, X. M., Blake, D. R.,2017, Tropospheric volatile organic compounds in China, Science of the Total Environment, 574, 1021–1043. https://doi.org/10.1016/j.scitotenv.2016.09.116spa
dc.relation.referencesLópez, R., Cabeza, I. O., Giráldez, I., & Díaz, M. J., 2011, Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose, Bioresource Technology, 102(17), 7984–7993. https://doi.org/10.1016/j.biortech.2011.05.085spa
dc.relation.referencesMiller, M. J., & Allen, D. G., 2005, Biodegradation of α-pinene in model biofilms in biofilters, Environmental Science and Technology, 39(15), 5856–5863. https://doi.org/10.1021/es048254yspa
dc.relation.referencesNi, J. Q., 2015, Research and demonstration to improve air quality for the U.S. animal feeding operations in the 21st century - A critical review, Environmental Pollution, 200, 105–119. https://doi.org/10.1016/j.envpol.2015.02.003spa
dc.relation.referencesPandey, R. A., Joshi, P. R., Mudliar, S. N., & Deshmukh, S. C., 2010, Biological treatment of waste gas containing mixture of monochlorobenzene (MCB) and benzene in a bench scale biofilter, Bioresource Technology, 101(14), 5168–5174. https://doi.org/10.1016/j.biortech.2010.02.017spa
dc.relation.referencesRAE_Systems, MultiRAE IR – Multi-Gas Monitor PGM-54 – Operation and Maintenance Manual, San José, CA, USA, 2002.spa
dc.relation.referencesTaylor, P., Gostomski, P. A., Sisson, J. B., Cherry, R. S., Gostomski, P. A., Sisson, J. B., Cherry, R. S., 2012, Water Content Dynamics in Biofiltration : The Role of Humidity and Microbial Heat Generation, 37–41. https://doi.org/10.1080/10473289.1997.10463952spa
dc.relation.referencesTrabue, S., Scoggin, K., Li, H., Burns, R., Xin, H., & Hat, J.,2 010, Speciation of volatile organic compounds from poultry production, Atmospheric Environment, 44, 3538–3546. https://doi.org/10.1016/j.atmosenv.2010.06.009spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordBiofiltration systemspa
dc.subject.keywordPerformance of the biofilterspa
dc.subject.keywordAtmospheric pollutantsspa
dc.subject.proposalSistema de biofiltraciónspa
dc.subject.proposalRendimiento de los biofiltrosspa
dc.subject.proposalContaminantes atmosféricosspa
dc.titleAcetic acid and pentane treatment by a biofiltration system based on organic beds under transient conditionsspa
dc.type.categoryApropiación Social y Circulación del Conocimiento: Edición de revista o libro de divulgación científicaspa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
849.pdf
Size:
1018.91 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Thumbnail USTA
Name:
license.txt
Size:
807 B
Format:
Item-specific license agreed upon to submission
Description: