Tesis caracterización estructural y magnética del multiferroico Bi0.96Sm0.04FeO3 y Bi0.93Sm0.07FeO3

dc.contributor.advisorSegura Peña, Sullyspa
dc.contributor.authorSuárez Londoño, Juan Diegospa
dc.coverage.campusCRAI-USTA Tunjaspa
dc.date.accessioned2020-05-27T12:52:37Zspa
dc.date.available2020-05-27T12:52:37Zspa
dc.date.issued2020-05-22spa
dc.descriptionEste trabajo reporta la síntesis y caracterización de los sistemas y , obtenidos por el método de reacción de estado sólido. Los óxidos obtenidos se caracterizarón por difracción de rayos X (DRX), refinamiento Rietveld y medidas de magnetización en función del campo magnético aplicado y la temperatura. La caracterización estructural por DRX y refinamiento Rietveld permitió la identificación de este material, el cual posee estructuras tipo perovskita romboédral con grupo espacial R3c. La caracterización por microscopía electrónica de barrido (MEB) permitió determinar que los sólidos sintetizados presentan una microestructura homogénea. Las curvas de magnetización en función del campo magnético externo se trabajaron en el rango de 500 y 1000 Oe se midieron a temperaturas de 50 y 300 K, los sólidos sintetizados exhibieron un comportamiento ferromagnético, con aumento de la magnetización remanente (MR), el campo coercitivo (HC) y la susceptibilidad magnética cuando se aumenta la concentración de Samario. Las características estructurales y magnéticas que se generan en los sólidos obtenidos hacen a estos materiales de gran interés como componentes multiferroicos.spa
dc.description.abstractThis work reports synthesis and characterization of the systems and , produced by the solid-state reaction method. The oxides obtained was characterized by X ray diffraction (XRD), Rietveld refinement and magnetization measures in function of the magnetic field applied and temperature. The structural characterization by Rietveld refinement and XRD allow identification perovskite type structure on all the materials with rhombohedral crystalline system and R3c space group. The characterization by scanning electron microscope (SEM) allow determinate that the sintered solids present a homogenous microstructure. The magnetization curves in function of magnetic field applied between 50 and 300 K and in function of the temperature between 500 and 1000 Oe of the sintered solids exhibited a ferromagnetic behavior, with a rise of the permanent magnetization (MR), the coercive field (HC) and the magnetic susceptibility when the samarium concentration rise up. The structural and magnetic characteristic that are generated in the obtained solids make these materials to big interest as multiferroic components.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSuárez Londoño, J.D.(2020).Tesis caracterización estructural y magnética del multiferroico Bi0.96Sm0.04FeO3 y Bi0.93Sm0.07FeO3.Tesis de pregrado. Universidad Santo Tomas. Tunja.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/23485
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesZaslavsky, A., & Tutov, A. (1960). La estructura del nuevo antiferromagnetico BiFeO3. Instituto de semiconductores de la Academia de Ciencias de la URSS, 815–817.spa
dc.relation.referencesAcosta, V., Cowan, C., & Graham, B. (1973). Curso de Física Moderna. Harla.spa
dc.relation.referencesAlbella Martín, J. M. (2003). Láminas delgadas y recubrimientos: Preparación, propiedades y aplicaciones. Madrid: CSIC.spa
dc.relation.referencesArnau, A. (2004). Piezoelectric Transducers and Applications. Springer: Berlin.spa
dc.relation.referencesArora, N., Dar, I., Hinderhofer, A., Pellet, N., Schreiber, F., Mohammed , S., & Grätzel, M. (2017). Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 768-771.spa
dc.relation.referencesAcevedo Salas, U., & Valenzuela, R. (2015). Materiales multiferróicos: una nueva alternativa para la conversión de energías. Materiales avanzados, 52-61.spa
dc.relation.referencesAroyo, M. (2016). International Tables for Crystallography Volume A: Space-group symmetry. Wiley.spa
dc.relation.referencesAskeland, D., & Wright, W. (2014). Essentials of Materials Science and Engineering. Palo Alto: CENGAGE Learning.spa
dc.relation.referencesAskeland, D., Fulay, P., & Wright, W. (2006). The Science and Engineering of Materials. California: Cengage Learning.spa
dc.relation.referencesAthayde, D., Souza, D., Silva, l. M., Vasconcelos, C. D., Nunes, E., Diniz da Costa, J., & Vasconcelos, W. (2016). Review of perovskite ceramic synthesis and membrane preparation methods. Ceramics International, 6555-6571.spa
dc.relation.referencesAuciello, O., Scott, J., & Ramesh, R. (1998). The Physics of Ferroelectric Memories. Physics Today, 22-27.spa
dc.relation.referencesAzaroff, L. (1970). Elements of X-ray crystallography. Acta crystallographica.spa
dc.relation.referencesBambynek, W., Crasemann, B., Fink, R. W., Freund, H. U., Mark, H., Swift, C. D., . . . Rao, P. (1972). X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities. Reviews of modern physics, 716.spa
dc.relation.referencesBartolomé, J. F. (1996). Análisis Mineralógico cuantitativo por difracción de rayos X, Aplicación del método del patrón interno “modificado” en el estudio de compuestos de Al2O3–Al2TiO5. Boletín de la Sociedad Española de Cerámica y Vidrio, 271-283.spa
dc.relation.referencesBoch, P., & Nièpce, J.-C. (2007). Ceramic Materials: Processes, Properties, and Applications. Londres: ISTE.spa
dc.relation.referencesBogle, K., Narwade, R., Phatangare, A., Dahiwale, S., Mahabole, M., & Khairnar, R. (2016). Optically modulated resistive switching in BiFeO3 thin film. Phys. Status Solidi A, 1-6.spa
dc.relation.referencesBogusz, A., You, T., Blaschke, D., Scholz, A., Shuai, Y., Luo, W., . . . Schmidt, H. (2013). Resistive switching in thin multiferroic films. 2013 International Semiconductor Conference Dresden - Grenoble (ISCDG).spa
dc.relation.referencesBrau, C. (2003). Modern Problems in Classical Electrodynamics. ChemPhysChem.spa
dc.relation.referencesBravais , A. (1866). Etudes cristallographiques. Paris: Élie de Beaumont, Léonce.spa
dc.relation.referencesBuschow, K., & Boer, F. (2003). Physics of Magnetism and Magnetic Materials. Boston: Springer.spa
dc.relation.referencesBushberg, J. T. (2002). The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins.spa
dc.relation.referencesCaicedo, J., Zapata, J., Gómez, M., & Prieto, P. (2008). Magnetoelectric coefficient in BiFeO3 compounds. Journal of Applied Physics.spa
dc.relation.referencesCalisir, I., Amirov, A., Kleppe, A., & Hall, D. (2018). Optimisation of functional properties in lead-free BiFeO3–BaTiO3 ceramics through La3+ substitution strategy. Journal of Materials Chemistry A, 5378-5397.spa
dc.relation.referencesCallister, W., & Rethwisch, D. (2009). Materials Science and Engineering An Introduction. Versailles: Wiley.spa
dc.relation.referencesCallister, W., & Rethwisch, D. (2016). Ciencia e ingeniería de los Materiales. Utah: Editorial Reverté.spa
dc.relation.referencesCambeses, A., & Scarrow, J. H. (2012). Estudio mineralógico cuantitativo mediante difracción de Rayos-X de rocas potásicas de la región volcánica neógena del sureste de España:‘lamproitas anómalas’. Geogaceta.spa
dc.relation.referencesCarter, C., & Norton, M. (2013). Ceramic Materials. New York: Springer.spa
dc.relation.referencesCasagrande, S. P., & Blanco, R. C. (2004). Método de Rietveld para el estudio de estructuras cristalinas. Lima: Revista de la facultad deficiencias de la UNI.spa
dc.relation.referencesCatalan, G., & Scott, J. (2009). Physics and Applications of Bismuth Ferrite. Advanced Materials, 2463-2485.spa
dc.relation.referencesChakrabarti, K., Das, K., Sarkar, B., & De, S. (2011). Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method. Journal of Applied Physics.spa
dc.relation.referencesCivalero, R. (2017). Automatización de un prototipo de monocromador para un difractómetro de neutrones para ensayos en el RA-6. / Automation of a neutron monochromator prototype for a diffractometer. Cuyo: Universidad Nacional de Cuyo.spa
dc.relation.referencesCohen, D. D. (1987). Average L shell fluorescence yields. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 55-58.spa
dc.relation.referencesCorrea-Baena, J. P., Saliba, M., Bounassisi, T., Grätzel, M., Abate, A., Tress, W., & Hagfeldt, A. (2017). Promises and challenges of perovskite solar cells. Science, 739-744.spa
dc.relation.referencesCorredor, L., Landínez-Téllez, D., Buitrago, D., Aguiar, J., & Roa-Rojas, J. (2012). Magnetic properties and structural characterization of Sr2RuHoO6 complex perovskite. Physica B: Condensed Matter, 3085-3088.spa
dc.relation.referencesCotton, F. A., Wilkinson, G., Murillo, C. A., Bochmann, M., & Grimes, R. (1988). Advanced inorganic chemistry. New York: Wiley.spa
dc.relation.referencesCowley, J. (1995). Diffraction Physics. North Holland: North Holland Publications.spa
dc.relation.referencesCullity, B., & Stock, S. (2001). Elements of X-Ray Diffraction. Pearson.spa
dc.relation.referencesDamjanovic, D. (1998). Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics.spa
dc.relation.referencesDoi, Y., Hinatsu, Y., Oikawa, K.-i., Shimojo, Y., & Morii, Y. (2000). Magnetic and neutron diffraction study on the ordered perovskite Sr2HoRuO6. Journal of Materials Chemistry, 797-800.spa
dc.relation.referencesDomenech, M., & Solans, J. (1981). Los Diagramas de Difraccion de Polvo Cristalino de los Polimorfos del Pentaborato Amonico Tetrahidratado. Trabajos de Geologia, 55-60.spa
dc.relation.referencesDurand Niconoff, J., & Mendoza Alvarez, M. (1996). Los rayos xy algunas de sus aplicaciones.spa
dc.relation.referencesEnpuku, K., Minotani, T., Gima, T., Kuroki, Y., Itoh, Y., Yamashita, M., . . . Kuhara, S. (1999). Detection of magnetic nanoparticles with superconducting quantum interference device (SQUID) magnetometer and application to immunoassays. Japanese journal of applied physics, L1102.spa
dc.relation.referencesEsteban , Á. M. (2002). Caracterización por Difracción de Rayos X de Heteroestructuras de Semiconductotes III-V: Aplicación al Diseño de Superredes Tensadas para Epitaxias de Ga As-Si. Madrid: Universidad Complutense de Madrid.spa
dc.relation.referencesFagaly, R. L. (2006). Superconducting quantum interference device instruments and applications. Review of scientific instruments, 101101.spa
dc.relation.referencesFeatherstone, M., & Burrows, R. (1996). Cyberspace/Cyberbodies/Cyberpunk: Cultures of Technological Embodiment. Teesside: SAGE.spa
dc.relation.referencesFischer, D. A., Colbert, J., & Gland, J. L. (1989). Ultrasoft (C, N, O) x‐ray fluorescence detection: Proportional counters, focusing multilayer mirrors, and scattered light systematics. Review of Scientific Instruments, 1596-1602.spa
dc.relation.referencesFlegler, S. L., & John, J. W. (n.d.). Scanning and transmission electron microscopy: an introduction. New York: W. H. Freeman and Company.spa
dc.relation.referencesFoner, S. (1959). Versatile and sensitive vibrating‐sample magnetometer. Review of Scientific Instruments, 548-557.spa
dc.relation.referencesFraygola, B. M. (2010). Multiferróicos monofásicos a base de Pb(Fe2/3W1/3)O3-PbTiO3: acoplamento magnetoelétrico intrínseco. São Carlos: Universidade Federal de São Carlos.spa
dc.relation.referencesFruth, V., Mitoseriu, L., Berger, D., Ianculescu, A., Matei, C., Preda, S., & Zaharescu, M. (2007). Preparation and characterization of BiFeO3 ceramic. Progress in Solid State Chemistry, 193-202.spa
dc.relation.referencesGao, F., Chen, X. Y., Yin, K. B., Dong, S., Ren, Z. F., Yuan, F., . . . Liu, J. M. (2007). Visible‐light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Advanced Materials, 2889-2892.spa
dc.relation.referencesGarzón López, J. P. (2016). Estudio de las propiedades estructurales y electr´onicas de la perovskita compleja La2BiMnO6. Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesGautschi, G. (2002). Piezoelectric Sensorics. Heidelberg: Springer.spa
dc.relation.referencesGawas, U., Verenkar, V., & Patil, D. (2011). Nanostructured Ferrite Based Electronic Nose Sensitive to Ammonia at Room Temperature. Sensors & Transducers, 45-55.spa
dc.relation.referencesGil Novoa, O. D. (2010). Síntesis y Caracterización Eléctrica y Magnética de compuestos de la familia BiFeTiO. Bogota´ : Universidad Nacional de Colombia .spa
dc.relation.referencesGlazer, A. (1975). Simple ways of determining perovskite structures. Acta Crystallographica, 756-762.spa
dc.relation.referencesGodara, P., Agarwal, A., Neetu, A., & Sanghi, S. (2015). Crystal structure refinement, dielectric and magnetic properties of Sm modified BiFeO3 multiferroic. Journal of Molecular Structure, 207–213.spa
dc.relation.referencesGoldstein, J. I., Newbury, D. E., Michael, J. R., Ritchi, N. W., Scott, J. H., & Joy, D. C. (1977). X-ray microanalysis in the electron microscope. New York: Springer.spa
dc.relation.referencesGómez, J. M., Canaria, C., Burgos, R. O., Ortiz, C. A., Supelano, G. I., & Vargas, C. P. (2016). Structural study of yttrium substituted BiFeO3. In Journal of Physics: Conference Series, 012091.spa
dc.relation.referencesGómez, J. M., García, G. S., Palacio, C. A., & Vargas, C. P. (2015). Production and structural and magnetic characterization of a Bi1-xYxFeO3 (x= 0, 0.25 and 0.30) system. In Journal of Physics: Conference Series, 012003.spa
dc.relation.referencesGonano, C., Zich, R., & Mussetta, M. (2015). Definition for Polarization P and Magnetization M Fully Consistent with Maxwell’s Equations. Progress In Electromagnetics Research B, 83–101.spa
dc.relation.referencesGonzález Viñas, W. (2003). Ciencia de los materiales. Barcelona: Ariel. S. A.spa
dc.relation.referencesGriffihs, D. (1999). Introduction to electrodynamics. New Jersey: Prentice Hall.spa
dc.relation.referencesGroom, C., Bruno, I., Lightfoot, M., & Ward, S. (2016). The Cambridge Structural Database. Structural Science Crystal Engineering Materials, 171-179.spa
dc.relation.referencesGualtieri, J., Kosinski, J., & Ballato, A. (1994). Piezoelectric materials for acoustic wave applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53 - 59.spa
dc.relation.referencesGuennam, A. E. (2005). Modelo para Compuestos Piezoeléctricos Utilizados en Control Activo. Tucumán: Universidad Nacional de Tucumán.spa
dc.relation.referencesHagenmuller, P. (1972). Preparative Methods in Solid State Chemistry. Burdeos: Academic Press.spa
dc.relation.referencesHazen, R. (1988). Perovskitas. Investigación y Ciencia.spa
dc.relation.referencesHendee, C. F., Fine, S., & Brown, W. B. (1956). Gas‐Flow Proportional Counter for Soft X‐Ray Detection. Scientific Instruments, 531-535.spa
dc.relation.referencesHernámdez Navarro, N. (2012). MATERIALES TIPO PEROVSKITA LnxBi1-xFe0.95M0.05O3 (Ln: Pr, Nd; M: Co, Mn, Sc; x= 0 – 0.15) PARA SU POTENCIAL APLICACIÓN EN MEMORIAS MAGNETOELÉCTRICAS. Nuevo León: Universidad Autónoma de Nuevo León.spa
dc.relation.referencesHerrera, F., & Luzgardo, O. (2016). Determinación del tamaño de grano cristalino por difracción de rayos-x de polvo.spa
dc.relation.referencesHessenbruch, A. (2002). A brief history of x-rays. Endeavour, 137–141.spa
dc.relation.referencesHill, N. (2000). Why Are There so Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 6694-6709.spa
dc.relation.referencesHirose, K., Sinmyo, R., & Hernlund, J. (2017). Perovskite in Earth’s deep interior. Science, 34-738.spa
dc.relation.referencesHou, Y., Du, X., Scheiner, S., McMeekin, D., Wang, Z., Li, N., . . . Brabec, C. (2017). A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 1192-1197.spa
dc.relation.referencesHwang, J., Rao, R., Giordano, L., Katayama, Y., Yu, Y., & Shao-Horn, Y. (2017). Perovskites in catalysis and electrocatalysis. Science, 751-756.spa
dc.relation.referencesIbáñez, C. A. (2014). Los sistemas terrestres y sus implicaciones medioambientales. Ministerio de Educación.spa
dc.relation.referencesJiang, Q. H., Nan, C. W., Wang, Y., Liu, Y. H., & Shen, Z. J. (2008). Synthesis and properties of multiferroic BiFeO 3 ceramics. Journal of Electroceramics, 690-693.spa
dc.relation.referencesKang, S.-J. (2005). Sintering: Densification, Grain Growth and Microstructure. Oxford: Elsevier Butterworth-Heinemann.spa
dc.relation.referencesKaszkur, Z. (2000). Powder diffraction beyond the Bragg law: study of palladium nanocrystals. Journal of Applied Crystallography, 1262-1270.spa
dc.relation.referencesKayser, P., Ranjbar, B., Kennedy, B., & Avdeev, M. (2017). The impact of chemical doping on the magnetic state of the Sr2YRuO6 double perovskite. Journal of Solid State Chemistry, 154-159.spa
dc.relation.referencesKefeni, K., Masagati, T., & Mamba, B. (2017). Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Materials Science and Engineering: B, 37-55.spa
dc.relation.referencesKeyes, R. (1988). Miniaturization of electronics and its limits. IBM Journal of Research and Development, 84 - 88.spa
dc.relation.referencesKhomchenko, V., Kiselev, D., Vieira, J., Jian, L., Kholkin, A., Lopes, A., . . . Maglione, M. (2008). Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. Journal of Applied Physics.spa
dc.relation.referencesKhomchenko, V., Paixão, J., Shvartsman, V., Borisov, P., Kleemann, W., Karpinsky, D., & Kholkin, A. (2010). Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scripta Materialia, 238-241.spa
dc.relation.referencesKhriplovich, I., & Zhitnitsky, A. (1982). What is the value of the neutron electric dipole moment in the Kobayashi-Maskawa model? Physics Letters B, 490-492.spa
dc.relation.referencesKim, V. (2006). The Human Factor. New York: Routledge.spa
dc.relation.referencesKittel, C. (2005). Introduction to solid state physics. Hoboken: john wiley & sons.spa
dc.relation.referencesKovalenko, M., Protesescu, L., & Bodnarchuk, M. (2017). Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 745-750.spa
dc.relation.referencesKuibo, Y., Mi, L., Yiwei, L., He, C., Chen, B., Wang, J., . . . Pan, X. (2010). Bipolar resistance switching in multiferroic BiFeO3 polycrystalline films. 2010 3rd International Nanoelectronics Conference (INEC).spa
dc.relation.referencesLahmar, A., Zhao, K., Habouti, S., Dietze, M., Solterbeck, C. H., & Es-Souni, M. (2011). Off-stoichiometry effects on BiFeO3 thin films. Solid State Ionics, 1-5.spa
dc.relation.referencesLarkins, F. P. (1971). Dependence of fluorescence yield on atomic configuration. Journal of Physics B: Atomic and Molecular Physics, L29.spa
dc.relation.referencesLarsen, E. (1965). Elementos de Transicion. Nueva York: Reverté. S. A.spa
dc.relation.referencesLawes, G. (1987). Scanning electron microscopy and X-ray microanalysis. Oak Ridge: OSTI.GOV.spa
dc.relation.referencesLesk, A. M. (1980). Reinterpretation of Moseley’s experiments relating K α line frequencies and atomic number. American Journal of Physics, 492-493.spa
dc.relation.referencesLi, S. (2014). Synthesis and Functional Properties of BiFeO3 and Bi2FeCrO6 based Nanostructures and Thin Films. Québec: Université de Québec.spa
dc.relation.referencesLi, S., Zhang, G., Zheng, H., Zheng, Y., & Wang, P. (2017). Stability of BiFeO 3 nanoparticles via microwave-assisted hydrothermal synthesis in Fenton-like process. Environmental Science and Pollution Research, 24400-24408.spa
dc.relation.referencesLiu, B., Hu, B., & Du, Z. (2011). Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO 3 nanowires. Chemical Communications, 8166-8168.spa
dc.relation.referencesLiu, Y., Fuh, H., & Wang, Y.-K. (2014). Expansion research on half-metallic materials in double perovskites of Sr2BB′O6 (B = Co, Cu, and Ni; B′ = Mo, W, Tc, and Re; and BB′ = FeTc). Computational Materials Science, 63-68.spa
dc.relation.referencesLotey, G. S., & Verma, N. (2012). Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. Journal of Nanoparticle Research.spa
dc.relation.referencesLu, J., Günther, A., Schrettle, F., Mayr, F., Krohns, S., Lunkenheimer, P., . . . Loidl, A. (2010). On the room temperature multiferroic BiFeO 3: magnetic, dielectric and thermal properties. The European Physical Journal B, 451-460.spa
dc.relation.referencesMagnusson, J., Djurberg, C., Granberg, P., & Nordblad, P. (1997). A low field superconducting quantum interference device magnetometer for dynamic measurements. Review of scientific instruments, 3761-3765.spa
dc.relation.referencesMain, J., Newton, D., Massengill, L., & Garcia, E. (1996). Efficient power amplifiers for piezoelectric applications. Smart Materials and Structures.spa
dc.relation.referencesManbachi, A., & Cobbold, R. (2011). Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection. Institute of Biomaterials and Biomedical Engineering Ultrasound Group, 187-196.spa
dc.relation.referencesMartín, J. D. (2006). XPowder. Programa para análisis cualitativo y cuantitativo por difracción de rayos X. Macla: revista de la Sociedad Española de Mineralogía, 35-44.spa
dc.relation.referencesMatula, R. (1979). Electrical resistivity of copper, gold, palladium, and silver. Journal of Physical and Chemical Reference Data, 1147-1298.spa
dc.relation.referencesMazumder, R., Sujatha Devi, P., Bhattacharya, D., Choudhury, P., & Sen, A. (2007). Ferromagnetism in nanoscale BiFeO3. Applied Physics Letters.spa
dc.relation.referencesMcCammon, D. (2005). Semiconductor Thermistors. Cryogenic Particle Detection, 35-62.spa
dc.relation.referencesMcGuire, E. J. (1969). K-shell Auger transition rates and fluorescence yields for elements Be-Ar. Physical Review, 185.spa
dc.relation.referencesMejía Gómez, J., Supelano García, G., Palacio, C., & Parra Vargas, C. (2014). Production and structural and magnetic characterization of a Bi1-xYxFeO3(x = 0, 0.25 and 0.30) system. Journal of Physics: Conference Series.spa
dc.relation.referencesMermin, A. (1976). Solid State Physics. Orlando: W. B. Saunders Company.spa
dc.relation.referencesMicroscopy, A. (2019, Agosto 20). Myscope Explore. Retrieved from http://myscope-explore.org/virtualSEM_explore.htmlspa
dc.relation.referencesMinh, D., Loi, N. V., Dúc, N., & Quoc Trinh, B. N. (2016). Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. Journal of Science: Advanced Materials and Devices, 75-79.spa
dc.relation.referencesMoseley, H. G. (1913). The high-frequency spectra of the elements. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1024-1034.spa
dc.relation.referencesMoubeh, R., Rousseau, O., Colson, D., Artemenko, A., & Maglione, M. (2012). Photoelectric Effects in Single Domain BiFeO3 Crystals. Advanced Functional Materials, 4814-4818.spa
dc.relation.referencesNanoanalysis, A. C. (2019, Septiembre 3). FELMI-ZFE. Retrieved from https://www.felmi-zfe.at/instrumentation/sem/fei-esem-quanta-200/spa
dc.relation.referencesNavrotsky, A. (1998). Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures. Chem. Mater., 2787-2793.spa
dc.relation.referencesNavrotsky, A., & Weidner, D. (1989). Perovskite: A Structure of Great Interest to Geophysics and Materials Science. Geophys. Monogr. Ser., 146.spa
dc.relation.referencesNeamen, D. (2003). Semiconductor Physics and Devices. New York: Mc Graw Hill.spa
dc.relation.referencesNishiyama, A., Doi, Y., & Hinatsu, Y. (2017). Magnetic interactions in rhenium-containing rare earth double perovskites Sr2LnReO6 (Ln=rare earths). Journal of Solid State Chemistry, 134-141.spa
dc.relation.referencesOchoa-Burgos, E. R., Parra-Vargas, C. A., Mejía-Gómez, J. A., & Grave, E. (2018). Study of the structural and magnetic properties of the system Bi1-xYxFeO3 x= 0 and 0.07 using Mössbauer spectroscopy. Dyna, 22-28.spa
dc.relation.referencesOrdóñez, S. (1996). Gabriel Martín Cardoso (1896-1954): el nacimiento en España de la determinación de estructuras cristalinas de minerales mediante difracción de rayos X. Huelva: Sociedad Geológica de España.spa
dc.relation.referencesOzerov, R., Zhdanov, G., & Kiseleb, S. (1962). Detección Neutronográfica de Ordenamiento Magnético en BiFeO3 Ferroelectric. Instituto de Física y Química. L. Ya. Karpova, Moscú, 1255–1258.spa
dc.relation.referencesPalkar, V. R., John, J., & Pinto, R. (2002). Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO 3 thin films. Applied Physics Letters, 1628-1630.spa
dc.relation.referencesParkinson, N., Hatton, P., Howard, J., Ritter, C., Ibberson, R., & Wu, M.-K. (2004). Variable temperature neutron powder diffraction study to determine the magnetic interactions in Sr2LnRuO6 (Ln = Ho and Tb). Journal of Physics: Condensed Matter.spa
dc.relation.referencesPavplov, P. (1985). Física del Estado Solido. Moscú: Editorial Mir.spa
dc.relation.referencesPeña Negrete, J. A. (2013). SÍNTESIS Y CÁLCULO DE LAS PROPIEDADES ESTRUCTURALES Y ELECTRÓNICAS DEL MATERIAL Sr2TiCrO6 APLICANDO EL FORMALISMO DE LA TEORIA FUNCIONAL DENSIDAD (DFT). Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesPerejón Pazo, A. (2012). Mecanosíntesis y caracterización de los materiales multiferroicos nanoestructurados Bi(1-x)RxFeO3 (R=La, Y). Sevilla: Universidad de Sevilla.spa
dc.relation.referencesPozar, D., & Sanchez, V. (1988). Magnetic tuning of a microstrip antenna on a ferrite substrate. Electronics Letters, 729 - 731.spa
dc.relation.referencesPradhan, A. K., Zhang, K., Hunter, D., Dadson, J. B., Loiutts, G. B., Bhattacharya, P., & Cui, Y. (2005). Magnetic and electrical properties of single-phase multiferroic BiFeO 3. Journal of Applied Physics, 093903.spa
dc.relation.referencesPrashanthi, K., Mandal, M., Duttagupta, S., Pinto, R., & Palkar, V. (2011). Fabrication and characterization of a novel magnetoelectric multiferroic MEMS cantilevers on Si. Sensors and Actuators A: Physical, 83-87.spa
dc.relation.referencesPrutskij, T., Silva-Andrade, F., Díaz Arencibia, P., Mintairov, A., Kosel, T., & Cook, R. (2004). Propiedades estructurales de la solución ternaria InGaP crecida sobre GaAs por el método de epitaxia de la fase líquida. Superficies y vacío, 32-37.spa
dc.relation.referencesQuiroz, H. P., Dussan, A., López, S. M., Calderón, J. A., Otálora, J. H., & Chica, R. (2014). Caracterización estructural de ceniza volcánica del nevado del Ruiz: Identificación fase Zeolita. MOMENTO, 1-13.spa
dc.relation.referencesRamachandran, B., & Rao, M. R. (2009). Low temperature magnetocaloric effect in polycrystalline BiFeO 3 ceramics. Applied Physics Letters, 142505.spa
dc.relation.referencesRamírez Giraldo, J. C., Clavijo, C. A., & McCollough, C. (2008). Tomografía Computarizada por Rayos X: Fundamentos y Actualidad. Revista Ingeniería Biomédica, 1909-9762.spa
dc.relation.referencesRazi Naqvi, K. (1996). The physical (in) significance of Moseley's screening parameter. American Journal of Physics, 1332-1332.spa
dc.relation.referencesReimer, L. (2013). Scanning electron microscopy: physics of image formation and microanalysis. New York: Springer.spa
dc.relation.referencesReitz, J., Milford, F., & Christy, R. (2014). Fundamentos de la Teoría Electromagnética. Reading: Addison–Wesley.spa
dc.relation.referencesRenau-Piqueras, J., & Faura, M. (1994). Principios básicos del microscopio electrónico de barrido. Sección de Microscopía Electrónica, 73-92.spa
dc.relation.referencesRichy, J., Hauguel, T., Jay, J., Pogossian, S., Warot-Fonrose, B., Sheppard, C., . . . Dekadjévi, D. (2015). Temperature dependence of the exchange bias properties in polycrystalline BiFeO3/Ni80Fe20. 2015 IEEE International Magnetics Conference (INTERMAG).spa
dc.relation.referencesRíos Viasus, J. (2016). Producción y Caracterización del Sistema CaMn1-xTixO3 (Con x = 0.25, 0.5, 0.75). Tunja: Universidad Pedagógica y Tecnológica de Colombia.spa
dc.relation.referencesRoy, D., Shivakumara, C., & Akula, V. (2009). Observation of the exchange spring behavior in hard–soft-ferrite nanocomposite. Journal of Magnetism and Magnetic Materials, L11-L14.spa
dc.relation.referencesSafizade, B., Masoudpanah, S., Hasheminiasari, M., & Ghasemi, A. (2018). Photocatalytic activity of BiFeO3/ZnFe2O4 nanocomposites under visible light irradiation. School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), 6988-6995.spa
dc.relation.referencesSaleh, B., & Teich, M. (2019). Fundamentals of Photonics. Hoboken: Wiley Series in Pure and Applied Optics.spa
dc.relation.referencesSamart, L., & Moore, E. (2005). Solid State Chemestry An Introduccion. New York: Taylor & Francis.spa
dc.relation.referencesSauceda, J. (2014). Introducción al estudio de los Materiales Multiferroicos. REVISTA DE LA ESCUELA DE FÍSICA, UNAH, 11-37.spa
dc.relation.referencesScott, J. (2013). Ferroelectric Memories. Inglaterra: Springer Science & Business.spa
dc.relation.referencesSerway, R. (1998). Principles of physics. Fort Worth: Saunders College Publishing.spa
dc.relation.referencesShi, T., Yang, R., & Guo, X. (2016). Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices. Solid State Ionics, 114-119.spa
dc.relation.referencesShirahata, Y., Suzuki, A., & Oku, T. (2016). Fabrication and characterization of BiFeO3 thin films and application for photovoltaic devices. 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS).spa
dc.relation.referencesSidorkin, A. (2006). Domain Structure in Ferroelectrics and Related Materials. Cambridgeshire: Combridge International Science Publishing.spa
dc.relation.referencesSilenko, A. (2008). Manifestation of tensor magnetic polarizability of the deuteron in storage ring experiments. The European Physical Journal Special Topics, 59–62.spa
dc.relation.referencesSinnecker, J. P. (2000). Materiais Magnéticos Doces e Materiais Ferromagnéticos Amorfos. Revista Brasileira de Ensino de Física, 396-405.spa
dc.relation.referencesSmith, D. O. (1956). Development of a Vibrating‐Coil Magnetometer. Review of Scientific Instruments, 261-268.spa
dc.relation.referencesSmith, W., & Hahemi, J. (2004). Fundamentos de la ciencia e ingeniería de materiales. Santa Fe: McGraw-Hill.spa
dc.relation.referencesSmolenskii, G., & Agranovskaya, A. (1958). Dielectric Polarization and Losses of Some Complex Compounds (in Russian). Zhur. Tekh. Fiz.spa
dc.relation.referencesSmolenskii, G., & Agranovskaya, A. (1959). Soviet Physics-Solid State. Nature, 1717.spa
dc.relation.referencesSolans, X., & MIRAVITLLES, C. (1978). Sistema automático para determinar estructuras cristalinas por difracción de rayos-X. Acta geológica hispánica, 93-96.spa
dc.relation.referencesSong, C., Tong, Y.-L., Deng, X.-Z., Yuan, G., Gao, F., Liu, D.-Q., & Zhang, S.-T. (2018). Enhanced photocatalytic efficiency of C3N4/BiFeO3 heterojunctions: the synergistic effects of band alignment and ferroelectricity. Physical Chemistry Chemical Physics, 3648-3657.spa
dc.relation.referencesSpaldin, N. A. (2010). Magnetic materials: fundamentals and applications. Cambridge: Cambridge University Press.spa
dc.relation.referencesStokes, D. (2008). Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). Padstow: John Wiley & Sons.spa
dc.relation.referencesSuárez Londoño, J. D., Segura Peña, S., Sáchica, E. H., & Cruz Pacheco, A. F. (2017). Structural and magnetic analysis of the Bix-1Sm0xFeO3 (x=0.04 and 0.07) system. Journal of Physics: Conference Series.spa
dc.relation.referencesSuzuki, Y. (2001). Epitaxial spinel ferrite thin films. Annual Review of Materials Research, 265-289.spa
dc.relation.referencesSuzuki, Y., Hu, G., Van Dover, R. B., & Cava, R. J. (1999). Magnetic anisotropy of epitaxial cobalt ferrite thin films. Journal of Magnetism and Magnetic Materials, 1-8.spa
dc.relation.referencesSuzuki, Y., Van Dover, R. B., Gyorgy, E. M., Phillips, J. M., Korenivski, V., Werder, D. J., . . . Peck Jr, W. F. (1996). Structure and magnetic properties of epitaxial spinel ferrite thin films. Applied physics letters, 714-716.spa
dc.relation.referencesSzuromi, P., & Grocholski, B. (2017). Natural and engineered perovskites. Science, 732-733.spa
dc.relation.referencesTablero, C. (2017). An evaluation of BiFeO3 as a photovoltaic material. Madrid: 161-165.spa
dc.relation.referencesTeobaldo, M. O., Yodalgis, M. L., Milian Pila, C. R., & Eduardo, P. C. (2010). Obtención de nanopartículas de L3xLa2/3-xTiO3 empleando un método de química. Revista CENIC. Ciencias Químicas, 1-11.spa
dc.relation.referencesTobón, J. I., & Gómez, R. K. (2008). Desempeño del cemento portland adicionado con calizas de diferentes grados de pureza. Dyna, 177-184.spa
dc.relation.referencesTomashpol'skii, Y., Venevtsev, Y., & Zhdanov, G. (1963). Electron diffraction study of BiFeO3 crystals. Karpov Institute of Physical Chemistry, Moscow, 1313–1314.spa
dc.relation.referencesTong, T., Chen, J., Jin, D., & Cheng, d. (2017). Preparation and gas sensing characteristics of BiFeO3 crystallites. Materials Letters, 160-162.spa
dc.relation.referencesTriana, C. A., Landínez-Tellez, D., & Roa-Rojas, J. (2015). General study on the crystal, electronic and band structures, the morphological characterization, and the magnetic properties of the Sr2DyRuO6 complex perovskite. Materials Characterization, 128-141.spa
dc.relation.referencesTu, C.-S., Chen, C.-S., Chen, P.-Y., Xu, Z.-R., Idzerda, Y., Schmidt, H., . . . Lin, C.-Y. (2015). Raman Vibrations, Domain Structures, and Photovoltaic Effects in A‐Site La‐Modified BiFeO3 Multiferroic Ceramics. Journal of the American Ceramic Society, 674-681.spa
dc.relation.referencesTu, C.-S., Xu, Z.-R., Schmidt, V., Chan, T.-S., Chien, R., & Son, H. (2015). A-site strontium doping effects on structure, magnetic, and photovoltaic properties of (Bi1−xSrx)FeO3−δ multiferroic ceramics. Ceramics International, 8417-8424.spa
dc.relation.referencesVanderah, T. (1992). Chemistry of Superconductor Materials: Preparation, Chemistry, Characterization, and Theory. Norwich: Noyes Publications.spa
dc.relation.referencesVelásquez Moya, X. A. (2018). Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara Sr2RuHoO6. Bogota: Universidad Nacional de Colombia.spa
dc.relation.referencesVieira, A. G., Chávez, D. E., & Sommer, R. L. (2013). Desenvolvimento de um magnetômetro de gradiente alternado de campo para nanoestruturas magneticamente macias. NOTAS TÉCNICAS, 3.spa
dc.relation.referencesVijayanand, S., Mahajan, M. B., Potdar, H. S., & Joy, P. A. (2009). Magnetic characteristics of nanocrystalline multiferroic BiFeO 3 at low temperatures. Physical Review B, 064423.spa
dc.relation.referencesVillafuerte, M., & Dávalos, A. (1995). El uso de los rayos X en la medicina. Boletín de la Sociedad Mexicana de Física, 213-218.spa
dc.relation.referencesWang, J. (2016). Multiferroic Materials: Properties, Techniques, and Applications. New York: CRC Press.spa
dc.relation.referencesWang, Q. Q., Wang, Z., Liu, X. Q., & Chen, X. M. (2011). Improved Structure Stability and Multiferroic Characteristics in CaTiO3‐Modified BiFeO3 Ceramics. Journal of the American Ceramic Society.spa
dc.relation.referencesWarren, B. (1941). X-Ray Diffraction Methods. Journal of Applied Physics, 375-384.spa
dc.relation.referencesWaseda, Y., Matsubara, E., & Shinoda, K. (2011). X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems. New York: Springer.spa
dc.relation.referencesWatarai, K., Yoshimatsu, K., Horiba, K., Kumigashira, H., Sakata, O., & Ohtomo, A. (2016). Epitaxial synthesis and physical properties of double-perovskite oxide Sr2CoRuO6 thin films. Journal of Physics: Condensed Matter.spa
dc.relation.referencesWaygood, A. (2013). An Introduction to Electrical Science. New York: Routledge.spa
dc.relation.referencesWelss, C. S., & Herrn, V. (1816). Determinación fundamental cristalográfica del feldespato. Tratados de la clase física de la Real Academia de Ciencias Prusiana de los años 1816-1817, 230-285.spa
dc.relation.referencesWenk, H.-R., & Bulakh, A. (2004). Minerals: Their Constitution and Origin. New York: Cambridge University Press.spa
dc.relation.referencesWest, A. (2013). Solid State Chemistry and its Applications. Sheffield: Wiley.spa
dc.relation.referencesWilson Rodrigo, L. O., & Juan Pablo, C. O. (2011). Estudio de la relación entre la fuerza de prensado y la absorción de agua. Cuenca: Universidad del Azuay.spa
dc.relation.referencesYagüe, V. (2012). Evolución de las propiedades multiferroicas del TbMnO3 mediante la dilución de la subred Mn. Zaragoza: Prensas Universitarias de Zaragoza.spa
dc.relation.referencesYang, C., Seidel, J., Kim, S., Rossen, P., Yu, P., Gajek, M., . . . Ramesh, R. (2009). Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials, 485–493.spa
dc.relation.referencesYang, S., Byrnes, S., Cony, T., Basu, S., Paran, D., Reichertz, L., . . . Ramesh, R. (2009). Photovoltaic effects in BiFeO3. Applied Physics Letters.spa
dc.relation.referencesYoung, H., & Freedman, R. (2009). Física Universitaria con Física Moderna. Coyoacán: Addison-Wesley.spa
dc.relation.referencesYuan, G., & Wing Or, S. (2006). Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Applied Physics Letters.spa
dc.relation.referencesZambrano, A. G. (1995). Aplicacion de los Rayos X en la Industria como Prueba No-Destructiva. Nuevo Leon: Universidad Autonoma de Nuevo Leon.spa
dc.relation.referencesZapata, J., Caicedo, J., Lopera, W., Gómez, M., Cuellar, F., & Prieto, P. (2008). Fabricación y Caracterización Eléctrica y Estructural de Películas Delgadas de BiFeO3. Revista Colombiana de Física, 77-80.spa
dc.relation.referencesZapata, J., Narvaes, J., Lopera, W., Gomez, M., Mendoza, G., & Prieto, P. (2008). Electric and Magnetic Properties of Multiferroic BiFeO_{3} and YMnO_{3} Thin Films. IEEE Transactions on Magnetics, 2895-2898.spa
dc.relation.referencesZatsiupa, A. A., Bashkirov, L. A., Troyanchuk, I. O., Petrov, G. S., Galyas, A. I., Lobanovskii, L. S., . . . Sirota, I. M. (2013). Magnetization, magnetic susceptibility, and effective magnetic moment of the Fe 3+ ions in Bi 2 Fe 4 O 9. Inorganic materials, 616-620.spa
dc.relation.referencesZhu, W. M., Guo, H. Y., & Ye, Z. G. (2008). Structural and magnetic characterization of multiferroic (BiFeO 3) 1− x (PbTiO 3) x solid solutions. Physical Review B, 014401.spa
dc.rightsAtribución 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.subject.keywordElectronicspa
dc.subject.keywordPerovskitespa
dc.subject.keywordBiFeOspa
dc.subject.keywordFerromagneticspa
dc.subject.keywordMaterialsspa
dc.subject.keywordCristalspa
dc.subject.keywordDRXspa
dc.subject.keywordSEMspa
dc.subject.lembIngeniería electrónicaspa
dc.subject.proposalElectrónicaspa
dc.subject.proposalPerovskitaspa
dc.subject.proposalBiFeOspa
dc.subject.proposalFerromagnéticospa
dc.subject.proposalMaterialesspa
dc.subject.proposalCristalspa
dc.subject.proposalDRXspa
dc.subject.proposalSEMspa
dc.titleTesis caracterización estructural y magnética del multiferroico Bi0.96Sm0.04FeO3 y Bi0.93Sm0.07FeO3spa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2019juandiego
Tamaño:
3.51 MB
Formato:
Adobe Portable Document Format
Descripción:
trabajo principal
Thumbnail USTA
Nombre:
derechos de autor
Tamaño:
221.23 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta dederechos
Thumbnail USTA
Nombre:
Derechos de autor
Tamaño:
91.82 KB
Formato:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Descripción:
Carta derechos de autor jpg

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: