Aspectos Que Afectan la Eficiencia en los Paneles Fotovoltaicos y Sus Potenciales Soluciones

dc.contributor.advisorSierra Alarcon, Adriana Fernandaspa
dc.contributor.authorCepeda Moya, Juan Sebastianspa
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.orcidhttps://orcid.org/0000-0002-9666-1246
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2017-07-19T21:45:26Zspa
dc.date.available2017-07-19T21:45:26Zspa
dc.date.issued2017spa
dc.descriptionLa energía solar fotovoltaica se muestra como una buena alternativa para suplir el aumento de la demanda energética actual, ya que se tiene una disponibilidad de recurso inagotable y a la hora de producir energía no genera grandes impactos ambientales en comparación a las fuentes convencionales que utilizan recursos fósiles. El objetivo de este trabajo es revisar los factores que afectan la eficiencia de un panel solar fotovoltaico y determinar los avances científicos que se han propuesto para reducir estos factores. La eficiencia y potencia entregada por un panel fotovoltaico son condiciones que se ven afectadas, principalmente por aspectos ambientales y tecnologías utilizadas en su proceso de fabricaciónspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Mecánicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCepeda Moya, J. S. (2017) Aspectos Que Afectan la Eficiencia en los Paneles Fotovoltaicos y Sus Potenciales Soluciones. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.SPA
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/4196
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Mecánicaspa
dc.publisher.programPregrado Ingeniería Mecánicaspa
dc.relation.referencesN. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev., vol. 62, pp. 1092–1105, 2016.
dc.relation.references“Banco Mundial.” [Online]. Available: http://www.bancomundial.org/. [Accessed: 05- May-2017].
dc.relation.references“International Energy Agency.” [Online]. Available: https://www.iea.org/. [Accessed: 05- May-2017].
dc.relation.referencesM. A. V. Zapata, O. S. Feria, R. de G. G. Huerta, O. V. Galan, S. A. Hernandez, R. S. Flores, Y. Matsumoto, and K. S. Alcantara, Tecnologías Solar-Eólica-Hidrógeno-Pilas de Combustible como fuentes de energía. 2009.
dc.relation.references“Home - REN21.” [Online]. Available: http://www.ren21.net/. [Accessed: 05-May-2017].
dc.relation.referencesP. Gonçalves, V. Sampaio, M. Orestes, and A. González, “Photovoltaic solar energy : Conceptual framework,” vol. 74, no. December 2016, pp. 590–601, 2017.
dc.relation.referencesF. Corcelli, M. Ripa, and S. Ulgiati, “End-of-life treatment of crystalline silicon photovoltaic panels . An emergy-based case study,” J. Clean. Prod., 2017.
dc.relation.referencesREN21, “Energías renovables 2016. Reporte de la situación mundial,” 2016.
dc.relation.referencesConsorcio Energético CORPOEMA, “Plan de Desarrollo para las Fuentes no Convencionales de Energía en Colombia (PDFNCE),” Formulación un plan Desarro. para las fuentes no Conv. en Colomb. V1, vol. 1, pp. 25–28, 2010.
dc.relation.references“ACCIONA - Líder Mundial en Energía Renovable e Infraestructuras.” [Online]. Available: https://www.acciona.com/es/. [Accessed: 21- Jun-2017].
dc.relation.referencesM. A. Lamigueiro, Óscar Perpiñán, Antonio Colmenar, Diseño de sistemas fotovoltaicos. 2012.
dc.relation.referencesD. M. Morales, M. Cappelletti, G. Casas, W. Hasperue, and E. P. Y Blanca, “Estudio basado en Algoritmos Genticos de celdas solares expuestas a radiación,” 2016 IEEE Bienn. Congr. Argentina, ARGENCON 2016, pp. 1–5, 2016.
dc.relation.referencesAnónimo, “Componentes de una instalación solar fotovoltaica,” 2012.
dc.relation.referencesGrupo Simec Chile SRL, “Analisis de un Sistema e Iluminacion, utilizando ampolletas de bajo Consumo y alimentado por paneles fotovoltaicos,” vol. 1, p. 138, 2010.
dc.relation.referencesE. E. Granda-Gutiérrez, O. A. Orta-Salomón, J. C. Díaz-Guillén, M. A. Jimenez, M. Osorio, and M. A. González, “Modelado y Simulacion de Celdas y Paneles Solares. ISSN:1405-2172,” Congr. Int. Ing. Electrón. Mem. Electro 2013, no. October, pp. 17–22, 2013.
dc.relation.referencesC. E. C. Nogueira, J. Bedin, R. K. Niedzialkoski, S. N. M. De Souza, and J. C. M. Das Neves, “Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil,” Renew. Sustain. Energy Rev., vol. 51, pp. 1610–1616, 2015.
dc.relation.referencesEnte Vasco, “La Energia Solar Fotovoltaica,” p. 90, 2000.
dc.relation.referencesK. H. Kapumpa and A. S. Virdi, “A Review Paper on Solar Photovoltaic Systems,” vol. 9, no. 41, pp. 43–52, 2016.
dc.relation.referencesA. Basnet, “Architectural Integration of Photovoltaic and Solar Thermal Collector Systems into buildings,” Master’s Thesis, no. June, 2012.
dc.relation.referencesM. Mirzaei and M. Z. Mohiabadi, “A comparative analysis of long-term field test of monocrystalline and polycrystalline PV power generation in semi arid climate conditions,” Energy Sustain. Dev., vol. 38, pp. 93–101, 2017.
dc.relation.referencesS. Edwin and T. Salamanca, “AN OPEN-SOURCE HARDWARE I-V CURVE TRACER FOR MONITORING PV OUTPUT IN BOLIVIA,” vol. 2, no. 14, pp. 42–64, 2014.
dc.relation.referencesO. D. Basak and B. S. Sazak, “Effect of developments on a PV system efficiency,” 2013 4th Int. Symp. Electr. Electron. Eng. ISEEE 2013 - Proc., 2013.
dc.relation.referencesR. Bhol, R. Dash, A. Pradhan, and S. M. Ali, “Environmental effect assessment on performance of solar PV panel,” 2015 Int. Conf. Circuits, Power Comput. Technol. [ICCPCT-2015], pp. 1–5, 2015.
dc.relation.referencesS. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review,” Energy Procedia, vol. 33, pp. 311–321, 2013.
dc.relation.referencesW. G. J. Van Helden, R. J. C. Van Zolingen, and H. A. Zondag, “PV Thermal systems: PV panels supplying renewable electricity and heat,” Prog. Photovoltaics Res. Appl., vol. 12, no. 6, pp. 415– 426, 2004.
dc.relation.referencesK. Kant, A. Shukla, A. Sharma, and P. Henry, “Thermal response of poly-crystalline silicon photovoltaic panels : Numerical simulation and experimental study,” Sol. Energy, vol. 134, pp. 147–155, 2016.
dc.relation.referencesM. D. Kempe, D. C. Miller, J. H. Wohlgemuth, S. R. Kurtz, J. M. Moseley, Q. A. Shah, G. Tamizhmani, K. Sakurai, M. Inoue, T. Doi, A. Masuda, S. L. Samuels, and C. E. Vanderpan, “Field testing of thermoplastic encapsulants in high-temperature installations,” Energy Sci. Eng., vol. 3, no. 6, pp. 565–580, 2015.
dc.relation.referencesH. M. S. Bahaidarah, A. A. B. Baloch, and P. Gandhidasan, “Uniform cooling of photovoltaic panels: A review,” Renew. Sustain. Energy Rev., vol. 57, pp. 1520–1544, 2016.
dc.relation.referencesT. A. S.S. Chandel, “Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems,” Renew. Sustain. Energy Rev., vol. 73, no. October 2016, pp. 1342–1351, 2017.
dc.relation.referencesF. Schiro, A. Benato, A. Stoppato, and N. Destro, “Improving photovoltaics ef fi ciency by water cooling : Modelling and experimental approach,” Energy, 2017.
dc.relation.referencesM. Shahrestani, R. Yao, E. Essah, L. Shao, A. C. Oliveira, A. Hepbasli, E. Biyik, T. del Caño, E. Rico, and J. L. Lechón, “Experimental and numerical studies to assess the energy performance of naturally ventilated PV façade systems,” Sol. Energy, vol. 147, pp. 37–51, 2017.
dc.relation.referencesA. Shukla, K. Kant, A. Sharma, and P. H. Biwole, “Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review,” Sol. Energy Mater. Sol. Cells, vol. 160, no. July 2016, pp. 275–286, 2017.
dc.relation.referencesM. Lucas, F. J. Aguilar, J. Ruiz, C. G. Cutillas, A. S. Kaiser, and P. G. Vicente, “Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling,” Renew. Energy, vol. 111, pp. 26–37, 2017.
dc.relation.referencesM. Rosa-clot, P. Rosa-clot, G. M. Tina, and C. Ventura, “ScienceDirect Experimental photovoltaic-thermal Power Plants based on TESPI panel,” Sol. Energy, vol. 133, pp. 305–314, 2016.
dc.relation.referencesM. Abderrezek and M. Fathi, “Experimental study of the dust effect on photovoltaic panels ’ energy yield,” Sol. Energy, vol. 142, pp. 308–320, 2017.
dc.relation.referencesD. Karthik, S. Pendse, S. Sakthivel, E. Ramasamy, and S. V. Joshi, “High performance broad band antireflective coatings using a facile synthesis of ink-bottle mesoporous MgF2 nanoparticles for solar applications,” Sol. Energy Mater. Sol. Cells, vol. 159, pp. 204–211, 2017.
dc.relation.referencesY. Ota, N. Ahmad, and K. Nishioka, “A 3.2% output increase in an existing photovoltaic system using an anti-reflection and anti-soiling silica-based coat,” Sol. Energy, vol. 136, pp. 547– 552, 2016.
dc.relation.referencesM. Wang, X. Gu, P. Ma, W. Zhang, D. Yu, P. Chang, X. Chen, and D. Li, “Microstructured superhydrophobic anti-reflection films for performance improvement of photovoltaic devices,” Mater. Res. Bull., vol. 91, pp. 208–213, 2017.
dc.relation.referencesS. Cuestas and L. Lebus, “Diseño de un seguidor de punto máximo de potencia,” pp. 37–42.
dc.relation.referencesM. Nabipour, M. Razaz, S. G. Seifossadat, and S. S. Mortazavi, “A new MPPT scheme based on a novel fuzzy approach,” Renew. Sustain. Energy Rev., vol. 74, no. October 2016, pp. 1147–1169, 2017.
dc.relation.referencesR. Boukenoui, R. Bradai, A. Mellit, M. Ghanes, and H. Salhi, “Comparative Analysis of P & O , Modified Hill Climbing-FLC , and Adaptive P & O FLC MPPTs for Microgrid Standalone PV System,” vol. 5, pp. 1095–1099, 2015.
dc.relation.referencesK. L. Lian, J. H. Jhang, and I. S. Tian, “A Maximum Power Point Tracking Method Based on Perturb and-Observe Combined With Particle Swarm Optimization,” IEEE J. Photovoltaics, vol. 4, no. 2, pp. 626–633, 2014.
dc.relation.referencesO. Guenounou, B. Dahhou, and F. Chabour, “Adaptive fuzzy controller based MPPT for photovoltaic systems,” Energy Convers. Manag., vol. 78, pp. 843–850, 2014.
dc.relation.referencesA. F. Murtaza, M. Chiaberge, F. Spertino, U. T. Shami, D. Boero, and M. De Giuseppe, “MPPT technique based on improved evaluation of photovoltaic parameters for uniformly irradiated photovoltaic array,” Electr. Power Syst. Res., vol. 145, pp. 248–263, 2017.
dc.relation.referencesP. Kofinas, S. Doltsinis, A. I. Dounis, and G. A. Vouros, “A reinforcement learning approach for MPPT control method of photovoltaic sources,” Renew. Energy, vol. 108, 2017.
dc.relation.referencesN. Chatrenour, H. Razmi, and H. Doagou Mojarrad, “Improved double integral sliding mode MPPT controller based parameter estimation for a stand-alone photovoltaic system,” Energy Convers. Manag., vol. 139, pp. 97–109, 2017.
dc.relation.referencesM. Benghanem, “Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia,” Appl. Energy, vol. 88, no. 4, pp. 1427– 1433, 2011.
dc.relation.referencesS. Akhlaghi, S. Member, M. Sarailoo, and S. Member, “Study of Sufficient Number of Optimal Tilt Angle Adjustment to Maximize Residential Solar Panels Yield,” 2017.
dc.relation.referencesA. Marucci and A. Cappuccini, “Dynamic photovoltaic greenhouse : Energy efficiency in clear sky conditions,” Appl. Energy, vol. 170, pp. 362–376, 2016
dc.relation.referencesH. Fathabadi, “Novel high ef fi cient of fl ine sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators,” Renew. Energy, vol. 95, pp. 485–494, 2016.
dc.relation.referencesD. La Manna, V. Li Vigni, E. Riva Sanseverino, V. Di Dio, and P. Romano, “Reconfigurable electrical interconnection strategies for photovoltaic arrays: A review,” Renew. Sustain. Energy Rev., vol. 33, pp. 412–426, 2014
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.lembIngeniería mecánicaspa
dc.subject.lembEnergía solar
dc.subject.lembClima
dc.subject.lembOferta y demanda
dc.subject.proposalEficienciaspa
dc.subject.proposalenergías renovablesspa
dc.subject.proposalmáximo punto de potencia (MPP)spa
dc.subject.proposalpanel fotovoltaicospa
dc.subject.proposalVariaciones climáticasspa
dc.titleAspectos Que Afectan la Eficiencia en los Paneles Fotovoltaicos y Sus Potenciales Solucionesspa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
cepedajuan2017.pdf
Tamaño:
946.72 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2017cartadefacultad.pdf
Tamaño:
34.94 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2017juancepedaFED.pdf
Tamaño:
106.25 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2017cartaderechosdeautor.pdf
Tamaño:
49.72 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: