Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla

dc.contributor.advisorGuarnizo Marín, José Guillermospa
dc.contributor.advisorForero García, Edwin Franciscospa
dc.contributor.advisorMontenegro Martínez, Davisspa
dc.contributor.authorSánchez Silvera, Alfredospa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000855847spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000761834spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001343788spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=3JSJ0C4AAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=pv86djIAAAAJ&hl=enspa
dc.contributor.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000000825spa
dc.contributor.orcidhttps://orcid.org/0000-0002-8401-4949spa
dc.contributor.orcidhttps://orcid.org/0000-0002-3818-7793spa
dc.contributor.orcidhttps://orcid.org/0000-0002-8336-7080spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2021-01-22T07:36:55Zspa
dc.date.available2021-01-22T07:36:55Zspa
dc.date.issued2021-01-19spa
dc.descriptionEl presente documento describe el desarrollo y diseño de una arquitectura basada en sistemas multi-agente, que permita el control del modo de operación de un sistema de micro-redes distribuidas en un entorno aislado, la arquitectura desarrollada permite el modo de operación de un conjunto de micro-redes eléctricas interconectadas entre sí mediante un bus común, pero aisladas de la red eléctrica principal, esto con el fin de proteger la vida útil de las baterías. Este documento propone una la simulación de varias micro-redes y un sistema multi-agente utilizando OpenDSS-G y Python. Esta simulación demostró los beneficios de emplear un Sistema Multi-Agente (MAS por sus siglas en inglés), como una plataforma para estudiar las tecnologías de comunicación, monitorización y control de las micro-redes.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Electrónicaspa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSánchez Silvera, A. (2020). Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucionalspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/31525
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programMaestría Ingeniería Electrónicaspa
dc.relation.referencesJ. Lagorse, M. G. Simoes, and A. Miraoui, “A Multiagent Fuzzy-Logic-Based Energy Management of Hybrid Systems,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2123– 2129, 2009.spa
dc.relation.referencesC.-H. Yoo, I.-Y. Chung, H.-J. Lee, and S.-S. Hong, “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, 2013spa
dc.relation.referencesR. Morsali, S. Ghorbani, R. Kowalczyk, and R. Unland, “On Battery Management Strategies in Multi-agent Microgrid Management,” in Business Information Systems Workshops, 2017, pp. 191–202.spa
dc.relation.referencesT. Bogaraj and J. Kanakaraj, “Intelligent energy management control for independent microgrid,” Sādhanā, vol. 41, no. 7, pp. 755–769, Jul. 2016spa
dc.relation.referencesM. Ding and K. Luo, “A Multi-Agent Energy Coordination Control Strategy in Microgrid Island Mode,” in Unifying Electrical Engineering and Electronics Engineering, 2014, pp. 529–536.spa
dc.relation.referencesN. L. Diaz, J. G. Guarnizo, M. Mellado, J. C. Vasquez, and J. M. Guerrero, “A RobotSoccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017.spa
dc.relation.referencesD. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “A Control Architecture to Coordinate Renewable Energy Sources and Energy Storage Systems in Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1156– 1166, May 2015spa
dc.relation.referencesJ. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining Control Strategies for MicroGrids Islanded Operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006spa
dc.relation.referencesH. Mahmood, D. Michaelson, and Jin Jiang, “Strategies for Independent Deployment and Autonomous Control of PV and Battery Units in Islanded Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 3, pp. 742–755, Sep. 2015spa
dc.relation.referencesT. L. Vandoorn, J. C. Vasquez, J. De Kooning, J. M. Guerrero, and L. Vandevelde, “Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies,” IEEE Ind. Electron. Mag., vol. 7, no. 4, pp. 42–55, Dec. 2013.spa
dc.relation.referencesJ. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov. 2012spa
dc.relation.referencesD. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 882– 892, Dec. 2014.spa
dc.relation.referencesA. H. Fathima and K. Palanisamy, “Optimization in microgrids with hybrid energy systems – A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 431–446, May 2015spa
dc.relation.referencesIEEE Std 1561-2007 : IEEE Guide for Optimizing the Performance and Life of LeadAcid Batteries in Remote Hybrid Power Systems. IEEE, 2008.spa
dc.relation.references] N. L. Diaz, D. Wu, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 728–735.spa
dc.relation.referencesG. Zhabelova, V. Vyatkin, and V. N. Dubinin, “Toward Industrially Usable Agent Technology for Smart Grid Automation,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2629–2641, Apr. 2015.spa
dc.relation.referencesP. H. Nguyen, W. L. Kling, and P. F. Ribeiro, “A Game Theory Strategy to Integrate Distributed Agent-Based Functions in Smart Grids,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 568–576, Mar. 2013.spa
dc.relation.referencesL. Hernandez et al., “A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants,” IEEE Commun. Mag., vol. 51, no. 1, pp. 106–113, Jan. 2013spa
dc.relation.referencesC. P. Nguyen and A. J. Flueck, “Agent Based Restoration With Distributed Energy Storage Support in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 1029– 1038, Jun. 2012.spa
dc.relation.referencesB. Ramachandran, S. K. Srivastava, C. S. Edrington, and D. A. Cartes, “An Intelligent Auction Scheme for Smart Grid Market Using a Hybrid Immune Algorithm,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4603–4612, Oct. 2011.spa
dc.relation.referencesH. Dagdougui and R. Sacile, “Decentralized Control of the Power Flows in a Network of Smart Microgrids Modeled as a Team of Cooperative Agents,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 510–519, Mar. 2014.spa
dc.relation.referencesC. M. Colson and M. H. Nehrir, “Comprehensive Real-Time Microgrid Power Management and Control With Distributed Agents,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 617–627, Mar. 2013.spa
dc.relation.referencesO. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014spa
dc.relation.references] W. Liu, W. Gu, W. Sheng, X. Meng, Z. Wu, and W. Chen, “Decentralized Multi-Agent System-Based Cooperative Frequency Control for Autonomous Microgrids With Communication Constraints,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 446– 456, Apr. 2014.spa
dc.relation.referencesQ. Li, F. Chen, M. Chen, J. M. Guerrero, and D. Abbott, “Agent-Based Decentralized Control Method for Islanded Microgrids,” IEEE Trans. Smart Grid, pp. 1–1, 2015.spa
dc.relation.referencesC.-X. Dou and B. Liu, “Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 771–778, Jun. 2013spa
dc.relation.referencesJ. G. GUARNIZO MARIN, “Arquitecturas Centralizadas de Coordinación. Extrapolación del Fútbol de Robots al Control de Modo de Operaciones de MicroRedes,” Universitat Politècnica de València, Valencia (Spain), 2016.spa
dc.relation.referencesA. Kantamneni, L. E. Brown, G. Parker, and W. W. Weaver, “Survey of multi-agent systems for microgrid control,” Eng. Appl. Artif. Intell., vol. 45, pp. 192–203, Oct. 2015.spa
dc.relation.referencesM. Baun, M. A. Awadallah, and B. Venkatesh, “Implementation of load-curve smoothing algorithm based on battery energy storage system,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2016, pp. 1–5spa
dc.relation.referencesT. S. Mahmoud, D. Habibi, and O. Bass, “Fuzzy logic for smart utilisation of Storage Devices in a typical microgrid,” in 2012 International Conference on Renewable Energy Research and Applications (ICRERA), 2012, pp. 1–6.spa
dc.relation.referencesK. Alqunun and P. A. Crossley, “Rated energy impact of BESS on total operation cost in a microgrid,” in 2016 IEEE Smart Energy Grid Engineering (SEGE), 2016, pp. 292–300spa
dc.relation.referencesC.-H. Yoo et al., “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, Sep. 2013.spa
dc.relation.referencesM. Batool, F. Shahnia, and S. M. Islam, “Multi-level supervisory emergency control for operation of remote area microgrid clusters,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1210–1228, 2019spa
dc.relation.referencesF. Shahnia, S. Bourbour, and A. Ghosh, “Coupling Neighboring Microgrids for Overload Management Based on Dynamic Multicriteria Decision-Making,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 969–983, 2017.spa
dc.relation.referencesE. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340–361, Feb. 2018.spa
dc.relation.referencesM. J. Wooldridge and N. R. Jennings, “Intelligent Agents: Theory and Practice,” 1995.spa
dc.relation.referencesGerhard Weiss, “Multiagent Systems, Second Edition | The MIT Press.” [Online]. Available: https://mitpress.mit.edu/books/multiagent-systems-second-edition. [Accessed: 14-Oct-2020].spa
dc.relation.referencesM. Institution of Electrical Engineers. and British Computer Society., IEE proceedings. Software., vol. 144, no. 1. [Institution of Electrical Engineers], 1997spa
dc.relation.referencesD. Montenegro Martinez, “Actor’s based diakoptics for the simulation, monitoring and control of smart grids,” Universidad de los Andes (Bogotá), Nov. 2015.spa
dc.relation.referencesR. D. Montenegro, D., “Program on Technology Innovation :,” Program on Technology Innovation: OpenDSS-G, vol. 3, no. 3. p. 117, 2020.spa
dc.relation.referencesEPRI, “OpenDSS PVSystem Element Model Version 1,” pp. 1–10, 2011.spa
dc.relation.referencesR. C. Dugan, J. A. Taylor, and D. Montenegro, “Energy storage modeling for distribution planning,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 954–962, Mar. 2017.spa
dc.relation.referencesP. Chirapongsananurak, S. Santoso, R. C. Dugan, and J. Smith, “Voltage regulation in distribution circuits with wind power,” in IEEE Power and Energy Society General Meeting, 2012, pp. 1–8spa
dc.relation.referencesF. Shahnia and S. Bourbour, “A practical and intelligent technique for coupling multiple neighboring microgrids at the synchronization stage,” Sustain. Energy, Grids Networks, vol. 11, pp. 13–25, Sep. 2017spa
dc.relation.referencesG. Tobón, J. Arturo, M. Marín, and M. Andres, “Curva de Cargabilidad,” pp. 1–5, 2013.spa
dc.relation.referencesF. Z. Harmouch, N. Krami, and N. Hmina, “A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster,” Sustain. Cities Soc., vol. 40, no. April, pp. 416–427, 2018.spa
dc.relation.references“Atlas Interactivo - Radiación IDEAM.” [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html. [Accessed: 06-Nov-2020].spa
dc.relation.referencesN. L. Diaz, J. G. Guarnizo, M. Mellado, J. C. Vasquez, and J. M. Guerrero, “A RobotSoccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017.spa
dc.relation.referencesC. Zambrano, C. Trujillo, D. Celeita, M. Hernandez, and G. Ramos, “GridTeractions: Simulation platform to interact with distribution systems,” in IEEE Power and Energy Society General Meeting, 2016, vol. 2016–Novemspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordGlobal warmingspa
dc.subject.keywordRenewable energyspa
dc.subject.keywordEnergy consumptionspa
dc.subject.keywordEnergy management modelsspa
dc.subject.lembCalentamiento globalspa
dc.subject.lembEnergia renovablespa
dc.subject.lembConsumo energéticospa
dc.subject.proposalModelos de gestión energéticaspa
dc.subject.proposalOperación de micro-redesspa
dc.subject.proposalSistemas multi-agentespa
dc.titleGestión energética basada en sistemas Multi-Agente para Micro-Redes en modo islaspa
dc.typemaster thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2020alfredosanchezsilvera.pdf
Tamaño:
2.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado
Thumbnail USTA
Nombre:
Carta Aprobacion Facultad.pdf
Tamaño:
129.41 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta Aprobación Facultad
Thumbnail USTA
Nombre:
Carta Derechos de Autor.pdf
Tamaño:
98.38 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta Derechos de Autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: