Determinación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografía
dc.contributor.advisor | Velasco Peña, Marco Antonio | |
dc.contributor.author | Sepúlveda Sánchez, Mateo | |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001098063 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=tqT9rd8AAAAJ | spa |
dc.contributor.orcid | https://orcid.org/ 0000-0003-4436-9443 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2022-05-05T22:33:09Z | |
dc.date.available | 2022-05-05T22:33:09Z | |
dc.date.issued | 2022-05-04 | |
dc.description | Los materiales celulares se han convertido en unos de los más prometedores hoy en día pues tienen aplicaciones en una gran cantidad de campos como la industria aeronáutica, aeroespacial, biomédica y militar, entre otras. Por este motivo, se han empezado a llevar a cabo diversas investigaciones para mejorar las técnicas de manufactura o los materiales usados para fabricarlos. El trabajo titulado:” Diseño para manufactura aditiva de elementos estructurales con materiales celulares mediante el uso de diagramas de Voronoi y triangulaciones de Delaunay: Aplicaciones biológicas y estructurales” escrito por Fahir Castañeda, plantea una forma más eficiente de fabricar este tipo de material a través de manufactura aditiva, de tal forma que haya más poros y de mayor tamaño en las zonas de la pieza que soportan menor carga y viceversa. En el presente estudio se tomarán las figuras obtenidas en el trabajo anteriormente mencionado, se harán simulaciones por el método de elementos finitos para ver el comportamiento de las mismas y se someterán a pruebas de compresión en un laboratorio. Todo esto con la intención de averiguar si las estructuras estudiadas son viables para posteriores trabajos a mayor escala. | spa |
dc.description.abstract | Nowadays, cellular materials have become one of the most promising materials because they have several applications in fields such as aeronautics, aerospace, biomedical, and the military industries. For this reason, several investigations have been carried out to improve manufacturing techniques or the materials used for them. Ones of these studies about this issue is the paper titled: "Design for Additive Manufacturing of Structural Elements with Cellular Materials Using Voronoi Diagrams and Delaunay Triangulations: Biological and Structural Applications," written by Fahir Castañeda. His paper proposes a new efficient way to manufacture this kind of materials by additive manufacturing, in such a way that the size and the number of pores were bigger in the higher stress zones than in the lower stress zone. in this paper the models obtained in the previously mentioned article will be tested by FEA simulation and laboratory compressive test to check if those models are viable in larger works implemented in the future. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Mecánico | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Sepúlveda Sánchez, M. (2022). Determinación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografía [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/44444 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Mecánica | spa |
dc.publisher.program | Pregrado Ingeniería Mecánica | spa |
dc.relation.references | Andrzejewska, E. (2019). Free-radical photopolymerization of multifunctional monomers. Three-Dimensional Microfabrication Using Two-Photon Polymerization, structure III, 77–99. https://doi.org/10.1016/B978-0-12-817827-0.00002-3 | spa |
dc.relation.references | Arslan, G. (2011). STRUCTURE-PROPERTY RELATIONSHIP IN TITANIUM FOAMS. www.sciencedirect.com/science/article/pii/S0079642598000048 | spa |
dc.relation.references | Bastani, S., & Mohseni, M. (2015). UV-Curable Nanocomposite Coatings and Materials. Handbook of Nanoceramic and Nanocomposite Coatings and Materials, 155–182. https://doi.org/10.1016/B978-0-12-799947-0.00007-9 | spa |
dc.relation.references | Benedetti, M., du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering R: Reports, 144, 100606. https://doi.org/10.1016/j.mser.2021.100606 | spa |
dc.relation.references | Bhate, D. (2019). Four questions in cellular material design. Materials, 12(7). https://doi.org/10.3390/ma12071060 | spa |
dc.relation.references | Bhate, D., Penick, C., Ferry, L., & Lee, C. (2019). Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs, 3(1), 19. https://doi.org/10.3390/designs3010019 | spa |
dc.relation.references | Bjelkhagen, H. I. (2005). Holographic Recording Materials and Their Processing. Encyclopedia of Modern Optics, 1993, 47–57. https://www.sciencedirect.com/science/article/pii/B012369395000779X | spa |
dc.relation.references | Bonfanti, A., Bhaskar, A., & Ashby, M. F. (2016). Plastic Deformation of Cellular Materials. Reference Module in Materials Science and Materials Engineering, 15. https://doi.org/10.1016/B978-0-12-803581-8.03009-5 | spa |
dc.relation.references | Castañeda, F. (2018). Diseño para manufactura aditiva de elementos estructurales con materiales celulares mediante el uso de diagramas de Voronoi y triangulaciones de Delaunay: Aplicaciones biológicas y estructurales. Universidad NAcional de Colombia. | spa |
dc.relation.references | Dong, N. (2015, December 3). Formlabs Form 2 3D Printer review: An excellent 3D printer. Cnet. https://www.cnet.com/reviews/formlabs-form-2-3d-printer-review/ | spa |
dc.relation.references | Duarte, I., Peixinho, N., Andrade-Campos, A., & Valente, R. (2018). Special Issue on Cellular Materials. Science and Technology of Materials, 30(1), 1–3. https://doi.org/10.1016/j.stmat.2018.05.001 | spa |
dc.relation.references | Erlinde. (2018). Which 3D Printed Resin Is Right for You? Materialise. https://i.materialise.com/blog/en/3d-printed-resin-overview/ | spa |
dc.relation.references | Formlabs. (n.d.). Uso de la Grey Pro Resin. Formlabs. Retrieved July 24, 2021, from https://support.formlabs.com/s/article/Using-Grey-Pro-Resin?language=es | spa |
dc.relation.references | FormLabs. (2014). Materials Data Sheet. FormLabs Materials Data Sheet, 76–77. http://usglobalimages.stratasys.com/Main/Secure/Material Specs MS/PolyJet-Material-Specs/Digital_Materials_Datasheet.pdf?v=635581278098921962 | spa |
dc.relation.references | Fratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in Materials Science, 52(8), 1263–1334. https://doi.org/10.1016/J.PMATSCI.2007.06.001 | spa |
dc.relation.references | Gibson, L. J., Ashby, M. F., Wegst, U., & Olive, R. (1995). The mechanical properties of natural materials. I. Materials property charts. 450, 141–162. | spa |
dc.relation.references | Green, D. J. (2001). Porous Ceramic Processing. Encyclopedia of Materials: Science and Technology, 7758–7761. https://doi.org/10.1016/B0-08-043152-6/01395-4 | spa |
dc.relation.references | Kijima, H., Yamada, S., Konishi, N., Kubota, H., Tazawa, H., Tani, T., Suzuki, N., Kamo, K., Okudera, Y., Sasaki, K., Kawano, T., & Shimada, Y. (2014). The reliability of classifications of proximal femoral fractures with 3-dimensional computed tomography: The new concept of comprehensive classification. Advances in Orthopedics, 2014. https://doi.org/10.1155/2014/359689 | spa |
dc.relation.references | Mancini, L. A. (n.d.). Fracturas por estrés del fémur. Musculoskeletalkey. Retrieved January 20, 2021, from https://musculoskeletalkey.com/stress-fractures-of-the-femur/ | spa |
dc.relation.references | Mangram, A., Moeser, P., Corneille, M. G., Prokuski, L. J., Zhou, N., Sohn, J., Chaliki, S., Oguntodu, O. F., & Dzandu, J. K. (2014). Geriatric trauma hip fractures: is there a difference in outcomes based on fracture patterns? World Journal of Emergency Surgery, 9(1), 59. https://doi.org/10.1186/1749-7922-9-59 | spa |
dc.relation.references | Mateja, E. (2011). Mechanical properties of cellular materials. https://pdfs.semanticscholar.org/62fb/bb4f0a0a3d3785e07743b0bda31346e596e8.pdf | spa |
dc.relation.references | Mathukumar, S., Nagarajan, V. A., & Radhakrishnan, A. (2019). Analysis and validation of femur bone data using finite element method under static load condition. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5547–5555. https://doi.org/10.1177/0954406219856028 | spa |
dc.relation.references | Mazur, M., Leary, M., McMillan, M., Sun, S., Shidid, D., & Brandt, M. (2017). Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM). Laser Additive Manufacturing, 119–161. https://doi.org/10.1016/B978-0-08-100433-3.00005-1 | spa |
dc.relation.references | MELO PEREZ, A. M. (2017). Análisis de elementos con sección transversal variable [Universidad autonoma del estado de Hidalgo]. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/1953 | spa |
dc.relation.references | Miguel Ángel, P. R. (n.d.). Cellular Nanocomposites: a new type of light weight advanced materials with improved properties. Retrieved August 22, 2019, from http://crono.ubu.es/innovationh2020/pdf/cellmat.pdf#targetText=Cellular Materials (also known as,Open cell cellular materials | spa |
dc.relation.references | Murr, L. E. (2015). Comparison of Biological (Natural) Material and Engineering Materiasl Properties. Handbook of Materials Structures, Properties, Processing and Performance, 1–1152. https://doi.org/10.1007/978-3-319-01815-7 | spa |
dc.relation.references | Prabhu, S., Raja, V. K. B., & Nikhil, R. (2015). Applications of Cellular Materials – An Overview. Applied Mechanics and Materials, 766–767, 511–517. https://doi.org/10.4028/www.scientific.net/amm.766-767.511 | spa |
dc.relation.references | Sanchez, S. (2017). Impresión 3D por estereolitografía. I3Dnatives. https://www.3dnatives.com/es/impresion-3d-por-estereolitografia-les-explicamos-todo/ | spa |
dc.relation.references | SolidWorks Corp. (2011). Comprensión del análisis no lineal. Informe Tecnico de Simulacion No Lineal, 9. | spa |
dc.relation.references | Solórzano, E., & Rodriguez-Perez, M. A. (2013). Cellular Materials. In Structural Materials and Processes in Transportation (pp. 371–374). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527649846.part4 | spa |
dc.relation.references | Sun, Y., & Li, Q. M. (2018). Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. International Journal of Impact Engineering, 112, 74–115. https://doi.org/10.1016/j.ijimpeng.2017.10.006 | spa |
dc.relation.references | Tchepel, D., Fernandes, F. A. O., Anjos, O., & Alves de Sousa, R. (2016). Mechanical Properties of Natural Cellular Materials. Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-803581-8.04056-X | spa |
dc.relation.references | Ulm, F.-J. (2001). Construction: Cellular Materials. In Encyclopedia of Materials: Science and Technology (pp. 1570–1574). Elsevier. https://doi.org/10.1016/B0-08-043152-6/00280-1 | spa |
dc.relation.references | Urbas, R., Elesini, U. S., Cigula, T., & Poljaček, S. M. (2015). Pad Printing. In S. Thomas (Ed.), Printing on Polymers: Fundamentals and Applications (pp. 263–278). Elsevier Inc. https://doi.org/10.1016/B978-0-323-37468-2.00016-6 | spa |
dc.relation.references | Wang, P., Wang, X., Zheng, Z., & Yu, J. (2017). Stress distribution in graded cellular materials under dynamic compression. Latin American Journal of Solids and Structures, 14(7), 1251–1272. https://doi.org/10.1590/1679-78253428 | spa |
dc.relation.references | Yekani Fard, M. (2011). Nonlinear Inelastic Mechanical Behaviour Of Epoxy Resin Polumeric Materials (Issue August). ARIZONA STATE UNIVERSITY. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.subject.keyword | Cellular materials | spa |
dc.subject.keyword | Strength of materials | spa |
dc.subject.keyword | Additive manufacturing | spa |
dc.subject.keyword | Simulation | spa |
dc.subject.lemb | Manufacturas | spa |
dc.subject.lemb | Telefonía celular | spa |
dc.subject.lemb | Teléfono celular | spa |
dc.subject.lemb | Materiales compuestos | spa |
dc.subject.proposal | materiales celulares | spa |
dc.subject.proposal | resistencia de materiales | spa |
dc.subject.proposal | manufactura aditiva | spa |
dc.subject.proposal | simulación | spa |
dc.title | Determinación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografía | spa |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2022mateosepulveda.pdf
- Tamaño:
- 2.4 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de Grado

- Nombre:
- Cartadeaprobacion
- Tamaño:
- 786.48 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta Aprobación Facultad

- Nombre:
- Cartaderechosdeautor
- Tamaño:
- 1004.57 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta Derechos de Autor
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: