Determinación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografía

dc.contributor.advisorVelasco Peña, Marco Antonio
dc.contributor.authorSepúlveda Sánchez, Mateo
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001098063spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=tqT9rd8AAAAJspa
dc.contributor.orcidhttps://orcid.org/ 0000-0003-4436-9443spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-05-05T22:33:09Z
dc.date.available2022-05-05T22:33:09Z
dc.date.issued2022-05-04
dc.descriptionLos materiales celulares se han convertido en unos de los más prometedores hoy en día pues tienen aplicaciones en una gran cantidad de campos como la industria aeronáutica, aeroespacial, biomédica y militar, entre otras. Por este motivo, se han empezado a llevar a cabo diversas investigaciones para mejorar las técnicas de manufactura o los materiales usados para fabricarlos. El trabajo titulado:” Diseño para manufactura aditiva de elementos estructurales con materiales celulares mediante el uso de diagramas de Voronoi y triangulaciones de Delaunay: Aplicaciones biológicas y estructurales” escrito por Fahir Castañeda, plantea una forma más eficiente de fabricar este tipo de material a través de manufactura aditiva, de tal forma que haya más poros y de mayor tamaño en las zonas de la pieza que soportan menor carga y viceversa. En el presente estudio se tomarán las figuras obtenidas en el trabajo anteriormente mencionado, se harán simulaciones por el método de elementos finitos para ver el comportamiento de las mismas y se someterán a pruebas de compresión en un laboratorio. Todo esto con la intención de averiguar si las estructuras estudiadas son viables para posteriores trabajos a mayor escala.spa
dc.description.abstractNowadays, cellular materials have become one of the most promising materials because they have several applications in fields such as aeronautics, aerospace, biomedical, and the military industries. For this reason, several investigations have been carried out to improve manufacturing techniques or the materials used for them. Ones of these studies about this issue is the paper titled: "Design for Additive Manufacturing of Structural Elements with Cellular Materials Using Voronoi Diagrams and Delaunay Triangulations: Biological and Structural Applications," written by Fahir Castañeda. His paper proposes a new efficient way to manufacture this kind of materials by additive manufacturing, in such a way that the size and the number of pores were bigger in the higher stress zones than in the lower stress zone. in this paper the models obtained in the previously mentioned article will be tested by FEA simulation and laboratory compressive test to check if those models are viable in larger works implemented in the future.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Mecánicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSepúlveda Sánchez, M. (2022). Determinación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografía [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucionalspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/44444
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Mecánicaspa
dc.publisher.programPregrado Ingeniería Mecánicaspa
dc.relation.referencesAndrzejewska, E. (2019). Free-radical photopolymerization of multifunctional monomers. Three-Dimensional Microfabrication Using Two-Photon Polymerization, structure III, 77–99. https://doi.org/10.1016/B978-0-12-817827-0.00002-3spa
dc.relation.referencesArslan, G. (2011). STRUCTURE-PROPERTY RELATIONSHIP IN TITANIUM FOAMS. www.sciencedirect.com/science/article/pii/S0079642598000048spa
dc.relation.referencesBastani, S., & Mohseni, M. (2015). UV-Curable Nanocomposite Coatings and Materials. Handbook of Nanoceramic and Nanocomposite Coatings and Materials, 155–182. https://doi.org/10.1016/B978-0-12-799947-0.00007-9spa
dc.relation.referencesBenedetti, M., du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering R: Reports, 144, 100606. https://doi.org/10.1016/j.mser.2021.100606spa
dc.relation.referencesBhate, D. (2019). Four questions in cellular material design. Materials, 12(7). https://doi.org/10.3390/ma12071060spa
dc.relation.referencesBhate, D., Penick, C., Ferry, L., & Lee, C. (2019). Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs, 3(1), 19. https://doi.org/10.3390/designs3010019spa
dc.relation.referencesBjelkhagen, H. I. (2005). Holographic Recording Materials and Their Processing. Encyclopedia of Modern Optics, 1993, 47–57. https://www.sciencedirect.com/science/article/pii/B012369395000779Xspa
dc.relation.referencesBonfanti, A., Bhaskar, A., & Ashby, M. F. (2016). Plastic Deformation of Cellular Materials. Reference Module in Materials Science and Materials Engineering, 15. https://doi.org/10.1016/B978-0-12-803581-8.03009-5spa
dc.relation.referencesCastañeda, F. (2018). Diseño para manufactura aditiva de elementos estructurales con materiales celulares mediante el uso de diagramas de Voronoi y triangulaciones de Delaunay: Aplicaciones biológicas y estructurales. Universidad NAcional de Colombia.spa
dc.relation.referencesDong, N. (2015, December 3). Formlabs Form 2 3D Printer review: An excellent 3D printer. Cnet. https://www.cnet.com/reviews/formlabs-form-2-3d-printer-review/spa
dc.relation.referencesDuarte, I., Peixinho, N., Andrade-Campos, A., & Valente, R. (2018). Special Issue on Cellular Materials. Science and Technology of Materials, 30(1), 1–3. https://doi.org/10.1016/j.stmat.2018.05.001spa
dc.relation.referencesErlinde. (2018). Which 3D Printed Resin Is Right for You? Materialise. https://i.materialise.com/blog/en/3d-printed-resin-overview/spa
dc.relation.referencesFormlabs. (n.d.). Uso de la Grey Pro Resin. Formlabs. Retrieved July 24, 2021, from https://support.formlabs.com/s/article/Using-Grey-Pro-Resin?language=esspa
dc.relation.referencesFormLabs. (2014). Materials Data Sheet. FormLabs Materials Data Sheet, 76–77. http://usglobalimages.stratasys.com/Main/Secure/Material Specs MS/PolyJet-Material-Specs/Digital_Materials_Datasheet.pdf?v=635581278098921962spa
dc.relation.referencesFratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in Materials Science, 52(8), 1263–1334. https://doi.org/10.1016/J.PMATSCI.2007.06.001spa
dc.relation.referencesGibson, L. J., Ashby, M. F., Wegst, U., & Olive, R. (1995). The mechanical properties of natural materials. I. Materials property charts. 450, 141–162.spa
dc.relation.referencesGreen, D. J. (2001). Porous Ceramic Processing. Encyclopedia of Materials: Science and Technology, 7758–7761. https://doi.org/10.1016/B0-08-043152-6/01395-4spa
dc.relation.referencesKijima, H., Yamada, S., Konishi, N., Kubota, H., Tazawa, H., Tani, T., Suzuki, N., Kamo, K., Okudera, Y., Sasaki, K., Kawano, T., & Shimada, Y. (2014). The reliability of classifications of proximal femoral fractures with 3-dimensional computed tomography: The new concept of comprehensive classification. Advances in Orthopedics, 2014. https://doi.org/10.1155/2014/359689spa
dc.relation.referencesMancini, L. A. (n.d.). Fracturas por estrés del fémur. Musculoskeletalkey. Retrieved January 20, 2021, from https://musculoskeletalkey.com/stress-fractures-of-the-femur/spa
dc.relation.referencesMangram, A., Moeser, P., Corneille, M. G., Prokuski, L. J., Zhou, N., Sohn, J., Chaliki, S., Oguntodu, O. F., & Dzandu, J. K. (2014). Geriatric trauma hip fractures: is there a difference in outcomes based on fracture patterns? World Journal of Emergency Surgery, 9(1), 59. https://doi.org/10.1186/1749-7922-9-59spa
dc.relation.referencesMateja, E. (2011). Mechanical properties of cellular materials. https://pdfs.semanticscholar.org/62fb/bb4f0a0a3d3785e07743b0bda31346e596e8.pdfspa
dc.relation.referencesMathukumar, S., Nagarajan, V. A., & Radhakrishnan, A. (2019). Analysis and validation of femur bone data using finite element method under static load condition. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5547–5555. https://doi.org/10.1177/0954406219856028spa
dc.relation.referencesMazur, M., Leary, M., McMillan, M., Sun, S., Shidid, D., & Brandt, M. (2017). Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM). Laser Additive Manufacturing, 119–161. https://doi.org/10.1016/B978-0-08-100433-3.00005-1spa
dc.relation.referencesMELO PEREZ, A. M. (2017). Análisis de elementos con sección transversal variable [Universidad autonoma del estado de Hidalgo]. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/1953spa
dc.relation.referencesMiguel Ángel, P. R. (n.d.). Cellular Nanocomposites: a new type of light weight advanced materials with improved properties. Retrieved August 22, 2019, from http://crono.ubu.es/innovationh2020/pdf/cellmat.pdf#targetText=Cellular Materials (also known as,Open cell cellular materialsspa
dc.relation.referencesMurr, L. E. (2015). Comparison of Biological (Natural) Material and Engineering Materiasl Properties. Handbook of Materials Structures, Properties, Processing and Performance, 1–1152. https://doi.org/10.1007/978-3-319-01815-7spa
dc.relation.referencesPrabhu, S., Raja, V. K. B., & Nikhil, R. (2015). Applications of Cellular Materials – An Overview. Applied Mechanics and Materials, 766–767, 511–517. https://doi.org/10.4028/www.scientific.net/amm.766-767.511spa
dc.relation.referencesSanchez, S. (2017). Impresión 3D por estereolitografía. I3Dnatives. https://www.3dnatives.com/es/impresion-3d-por-estereolitografia-les-explicamos-todo/spa
dc.relation.referencesSolidWorks Corp. (2011). Comprensión del análisis no lineal. Informe Tecnico de Simulacion No Lineal, 9.spa
dc.relation.referencesSolórzano, E., & Rodriguez-Perez, M. A. (2013). Cellular Materials. In Structural Materials and Processes in Transportation (pp. 371–374). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527649846.part4spa
dc.relation.referencesSun, Y., & Li, Q. M. (2018). Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. International Journal of Impact Engineering, 112, 74–115. https://doi.org/10.1016/j.ijimpeng.2017.10.006spa
dc.relation.referencesTchepel, D., Fernandes, F. A. O., Anjos, O., & Alves de Sousa, R. (2016). Mechanical Properties of Natural Cellular Materials. Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-803581-8.04056-Xspa
dc.relation.referencesUlm, F.-J. (2001). Construction: Cellular Materials. In Encyclopedia of Materials: Science and Technology (pp. 1570–1574). Elsevier. https://doi.org/10.1016/B0-08-043152-6/00280-1spa
dc.relation.referencesUrbas, R., Elesini, U. S., Cigula, T., & Poljaček, S. M. (2015). Pad Printing. In S. Thomas (Ed.), Printing on Polymers: Fundamentals and Applications (pp. 263–278). Elsevier Inc. https://doi.org/10.1016/B978-0-323-37468-2.00016-6spa
dc.relation.referencesWang, P., Wang, X., Zheng, Z., & Yu, J. (2017). Stress distribution in graded cellular materials under dynamic compression. Latin American Journal of Solids and Structures, 14(7), 1251–1272. https://doi.org/10.1590/1679-78253428spa
dc.relation.referencesYekani Fard, M. (2011). Nonlinear Inelastic Mechanical Behaviour Of Epoxy Resin Polumeric Materials (Issue August). ARIZONA STATE UNIVERSITY.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordCellular materialsspa
dc.subject.keywordStrength of materialsspa
dc.subject.keywordAdditive manufacturingspa
dc.subject.keywordSimulationspa
dc.subject.lembManufacturasspa
dc.subject.lembTelefonía celularspa
dc.subject.lembTeléfono celularspa
dc.subject.lembMateriales compuestosspa
dc.subject.proposalmateriales celularesspa
dc.subject.proposalresistencia de materialesspa
dc.subject.proposalmanufactura aditivaspa
dc.subject.proposalsimulaciónspa
dc.titleDeterminación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografíaspa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2022mateosepulveda.pdf
Tamaño:
2.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado
Thumbnail USTA
Nombre:
Cartadeaprobacion
Tamaño:
786.48 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta Aprobación Facultad
Thumbnail USTA
Nombre:
Cartaderechosdeautor
Tamaño:
1004.57 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta Derechos de Autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: