Implementación de un sistema de posicionamiento en interiores para robots móviles

dc.contributor.advisorCamacho Poveda, Edgar Camilospa
dc.contributor.advisorGelvez Lizarazo, Oscar Mauriciospa
dc.contributor.authorForero Gallego, Stefhannya Maria Jossespa
dc.contributor.authorTorres Laguado, Juan Sebastianspa
dc.contributor.corporatenameUniversidad Santo Tomasspa
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001342623spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=tJG988kAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=NWM0F0AAAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0002-6084-2512spa
dc.contributor.orcidhttps://orcid.org/0000-0001-6858-5293spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2021-03-25T14:36:17Zspa
dc.date.available2021-03-25T14:36:17Zspa
dc.date.issued2021-03-24spa
dc.descriptionEste proyecto tiene como finalidad seleccionar una tecnología adecuada para la implementación de un sistema de posicionamiento en interiores. Para esto, se realizó una revisión del estado del arte, donde se destacaron las tecnologías Wi-Fi, Bluetooth de baja energía y ultrasonido. Luego, se hicieron investigaciones más detalladas de dichos trabajos, para deducir cuál sería las más apropiada, teniendo en cuenta pruebas y resultados finales. De esta manera, se seleccionó el ultrasonido principalmente por lograr errores en el orden de centímetros y además, por su facilidad en la captura y procesamiento de la señal. Adicionalmente, se eligieron las ondas de radio para que sean tomadas como referencia, para la estimación de la distancia relativa entre nodos. Para el hardware del sistema, se implementaron seis nodos, un nodo emisor para que envíe una señal de ultrasonido y una de radiofrecuencia, cuatro nodos receptores para que reciban ambas señales, calculen la diferencia de tiempo entre estas dos, después estimen su respectiva distancia y la envíen a un nodo final. Este nodo final, se compone de un computador y el módulo Xbee coordinador, este nodo recibe las cuatro distancias correspondientes y posteriormente estima la posición final del nodo móvil en tercera dimensión. Para obtener la posición relativa respecto al sistema fue necesario utilizar la técnica de posicionamiento por linealización con trilateración esférica. Se debe mencionar, que en este caso se presentaron singularidades en los nodos del sistema, por ser nodos que se encuentran en el mismo plano. Estas singularidades fueron resueltas al aplicar la descomposición de valor singular en el sistema de ecuaciones.spa
dc.description.abstractThe purpose of this project is to select a suitable technology for the implementation of an indoor positioning system. For this, a review of the state of the art was carried out, where Wi-Fi, Bluetooth low energy and ultrasound technologies were highlighted. Later, more detailed investigations of these works were made, to deduce which would be the most appropriate, taking into account tests and final results. In this way, ultrasound was selected mainly for achieving errors in the order of centimeters and also for its ease in capturing and processing the signal. Additionally, radio waves were chosen to be taken as a reference, for estimating the relative distance between nodes. For the hardware of the system, six nodes were implemented, a transmitter node to send an ultrasound signal and a radio frequency signal, four receiver nodes to receive both signals, calculate the time difference between these two, then estimate their respective distance and send it to an end node. This final node is made up of a computer and the coordinating Xbee module. This node receives the four corresponding distances and subsequently estimates the final position of the mobile node in third dimension. To obtain the relative position with respect to the system, it was necessary to use the linearization positioning technique with spherical trilateration. It should be mentioned that in this case there were singularities in the nodes of the system, because they are nodes that are in the same plane. These singularities were solved by applying the singular value decomposition in the system of equations.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationForero Gallego, S. M. J. & Torres Laguado, J. S. (2021). Implementación de un sistema de posicionamiento en interiores para robots móviles. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/33179
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesJ. Haverinen, The Rise of Indoor Positioning, 2016. [Online]. Available: http://www.indooratlas.com/wp-content/uploads/2016/09/A-2016-Global-Research-Report-On-The-Indoor-Positioning-Market.pdfspa
dc.relation.referencesD. Capriglione, D. Casinelli and L. Ferrigno, Use of frequency diversity to improve the performance of RSSI-based distance measurements,2015 IEEE International Workshop on Measurements Networking (M\N), Coimbra, 2015, pp. 1-6, doi: 10.1109/IWMN.2015.7322973.spa
dc.relation.referencesBaturone Ollero Anibal and Gonzalez Jimenez Javier; Estimación De La Posición De Un Robot Móvil. 1996.spa
dc.relation.referencesF. Seco Granja et al, Localización personal en entornos interiores con tecnología RFID, vol. 10, (3), pp. 313-324, 2013. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::ec4f8c5 40c163506a5bfcd719b9b51d7. DOI: 10.1016/j.riai.2013.05.004.spa
dc.relation.referencesR. F. Brena et al, Evolution of Indoor Positioning Technologies: A Survey, Journal of Sensors, 2017. Available: https://www.hindawi.com/journals/js/2017/2630413. DOI: 10.1155/2017/2630413.spa
dc.relation.referencesW. Sakpere, M. Adeyeye-Oshin and N. B.W.Mlitwa, View of A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies, South African Computer Journal, 2017. [Online]. Available: https://sacj.cs.uct.ac.za/index.php/sacj/article/download/452/249.spa
dc.relation.referencesG. Deak, K. Curran and J. Condell, A survey of active and passive indoor localisation systems, Computer Communications, vol. 35, (16), pp. 1939-1954, 2012. Available: https://www.sciencedirect.com/science/article/pii/S014036641200196X. DOI:10.1016/j.comcom.2012.06.004.spa
dc.relation.referencesZ. Farid, R. Nordin and M. Ismail, Recent Advances in Wireless Indoor Localization Techniques and System, Journal of Computer Networks and Communications, 2013. [Online]. Available: https://www.hindawi.com/journals/jcnc/2013/185138/. DOI: 10.1155/2013/185138.spa
dc.relation.referencesY. Wang, Q. Yang, G. Zhang and P. Zhang, Indoor positioning system using Euclidean distance correction algorithm with bluetooth low energy beacon, 2016 International Conference on Internet of Things and Applications (IOTA), Pune, 2016, pp. 243-247, doi: 10.1109/IOTA.2016.7562730.spa
dc.relation.referencesZ. Cao, R. Chen, G. Guo and Y. Pan, iBaby: A low cost BLE pseudolite based indoor baby care system, 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, 2018, pp. 1-6, doi: 10.1109/UPINLBS.2018.8559887.spa
dc.relation.referencesS. Memon, M. M. Memon, F. K. Shaikh and S. Laghari, Smart indoor positioning using BLE technology, 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS), Salmabad, 2017, pp. 1-5, doi: 10.1109/ICETAS.2017.8277872.spa
dc.relation.referencesA. Corbacho Salas, Indoor Positioning System based on Bluetooth Low Energy, UPC, Escuela Técnica Superior de ingeniería de Telecomunicaciones de Barcelona, 2014.spa
dc.relation.referencesChai, Song & An, Renbo & Du, Zhengzhong. An Indoor Positioning Algorithm using Bluetooth Low Energy RSSI. 2016, 10.2991/amsee-16.2016.72.spa
dc.relation.referencesS. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.spa
dc.relation.referencesH. Zou, Ming Jin, H. Jiang, L. Xie and C. Spanos, WinIPS: WiFi-based non-intrusive IPS for online radio map construction, 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, 2016, pp. 1081-1082, doi: 10.1109/INFCOMW.2016.7562263.spa
dc.relation.referencesP. Bolliger, Robust Indoor Positioning through Adaptive Collaborative Labeling of Location Fingerprints, ETH Zurich, 2011. [Online]. Available: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/72799/eth-5267-02.pdf.spa
dc.relation.referencesJ. Xiao, K. Wu, Y. Yi and L. M. Ni, FIFS: Fine-Grained Indoor Fingerprinting System, 2012 21st International Conference on Computer Communications and Networks (ICCCN), Munich, 2012, pp. 1-7, doi: 10.1109/ICCCN.2012.6289200spa
dc.relation.referencesNguyen Dinh-Van, F. Nashashibi, Nguyen Thanh-Huong and E. Castelli, Indoor Intelligent Vehicle localization using WiFi received signal strength indicator, 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, 2017, pp. 33-36, doi: 10.1109/ICMIM.2017.7918849.spa
dc.relation.referencesNissanka Bodhi Priyantha,The Cricket Indoor Location System. 2005.spa
dc.relation.referencesMedina, Carlos et al. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy. Sensors (Basel, Switzerland) vol. 13,3. 2013, doi:10.3390/s130303501spa
dc.relation.referencesM. Addlesee et al., Implementing a sentient computing system, in Computer, vol. 34, no. 8, pp. 50-56, Aug. 2001, doi: 10.1109/2.940013.spa
dc.relation.referencesJ. Eckert, F. Dressler and R. German, Real-time indoor localization support for four-rotor flying robots using sensor nodes, 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, 2009, pp. 23-28, doi: 10.1109/ROSE.2009.5355994.spa
dc.relation.referencesS. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.spa
dc.relation.referencesS. Latif, R. Tariq, W. Haq and U. Hashmi, INDOOR POSITIONING SYSTEM using ultrasonics, Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, 2012, pp. 440-444, doi: 10.1109/IBCAST.2012.6177596.spa
dc.relation.referencesSistema de localización en tiempo real WhereNet, Zebra Technologies. [Online]. Available: https://www.zebra.com/la/es/products/location-technologies/wherenet.html.spa
dc.relation.referencesJ. Liu, S. Chen, M. Chen, Q. Xiao and L. Chen, Pose Sensing With a Single RFID Tag, in IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2023-2036, Oct. 2020, doi: 10.1109/TNET.2020.3007830.spa
dc.relation.referencesA. Harter and A. Hopper, A distributed location system for the active office, IEEE Network, vol. 8, (1), pp. 62-70, 1994. DOI: 10.1109/65.260080.spa
dc.relation.referencesFirefly by Cybernet Systems Corporation. [Online]. Available: https://www.cybernet.com/interactive/firefly/.spa
dc.relation.referencesE. Bernardes, S. Viollet and T. Raharijaona, A Three-Photo-Detector Optical Sensor Accurately Localizes a Mobile Robot Indoors by Using Two Infrared Light-Emitting Diodes, in IEEE Access, vol. 8, pp. 87490-87503, 2020, doi: 10.1109/ACCESS.2020.2992996.spa
dc.relation.referencesBarry Brumitt, Brian Meyers, John Krumm, Amanda Kern, Steven Shafer, EasyLiving: Technologies for intelligent environments, September. 2000.spa
dc.relation.referencesY. Gu, A. Lo and I. Niemegeers, A survey of indoor positioning systems for wireless personal networks, in IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 13-32, First Quarter 2009, doi: 10.1109/SURV.2009.090103.spa
dc.relation.referencesRohta, J., Perumal, B., Narayanan, S., Tharkur, P. and B, R. User Localization In An Indoor Environment Using Fuzzy Hybrid Of Particle Swarm Optimization And Gravitational Search Algorithm With Neural Networks. 2014. VIT University.spa
dc.relation.referencesAdege, A., Lin, H., Tarekegn, G., Munaye, Y. and Yen, L. An Indoor And Outdoor Positioning Using A Hybrid Of Support Vector Machine And Deep Neural Network Algorithms. 2018 .National Taipei University of Technology.spa
dc.relation.referencesP. Mohaghegh, D. Pravica, J. S. Botero-Valencia, A. Boegli and Y. Perriard, Application of a Low Frequency, Low Power Radio Frequency Positioning System for Real Time Indoor Positioning, 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 2020, pp. 406-410, doi: 10.23919/ICEMS50442.2020.9291201.spa
dc.relation.referencesZ. Chen, M. I. AlHajri, M. Wu, N. T. Ali and R. M. Shubair, A Novel Real-Time Deep Learning Approach for Indoor Localization Based on RF Environment Identification, in IEEE Sensors Letters, vol. 4, no. 6, pp. 1-4, June 2020, Art no. 7002504, doi: 10.1109/LSENS.2020.2991145.spa
dc.relation.referencesH. Liu et al, Survey of wireless indoor positioning techniques and systems, IEEE Trans Syst Man Cybern Pt C Appl Rev, vol. 37, (6), pp. 1067-1080, 2007. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-36248934122doi=10.1109\%2fTSMCC.2007.905750partnerID=40;md5=24 54644b18133a464502dfc82efbb147. DOI: 10.1109/TSMCC.2007.905750.spa
dc.relation.referencesOgata Katsuhiko, Modern Control Engineering, Fifth Edition. Editorial Pearson.spa
dc.relation.referencesData Fusion For Improved TOA/TDOA Position Determination in Wireless Systems, VTechWorks, 2000. [Online]. Available: https://vtechworks.lib.vt.edu/bitstream/handle/10919/34723/Master4.pdf?sequen ce=1&isAllowed=y.spa
dc.relation.referencesR. Kaune, Accuracy studies for TDOA and TOA localization, 2012 15th International Conference on Information Fusion, Singapore, 2012, pp. 408-415.spa
dc.relation.referencesF. Zafari, A. Gkelias and K. K. Leung, A Survey of Indoor Localization Systems and Technologies, in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568-2599, thirdquarter 2019, doi: 10.1109/COMST.2019.2911558.spa
dc.relation.referencesC. Yang and H. Shao,WiFi-based indoor positioning, IEEE Communications Magazine, vol. 53, (3), pp. 150-157, 2015. DOI: 10.1109/MCOM.2015.7060497.spa
dc.relation.referencesF. Abdelhafeid and R. Penno, AoA Estimation Using an Array of Diversely Polarized Microstrip Antenna, NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, 2018, pp. 611-617, doi: 10.1109/NAECON.2018.8556805.spa
dc.relation.referencesG. Cullen, K. Curran, J. Santos, G. Maguire and D. Bourne, CAPTURE Cooperatively applied positioning techniques utilizing range extensions, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, 2014, pp. 340-346, doi: 10.1109/IPIN.2014.7275501.spa
dc.relation.referencesKaibi Zhang, Yangchuan Zhang and Subo Wan, Research of RSSI indoor ranging algorithm based on Gaussian - Kalman linear filtering, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 1628-1632, doi: 10.1109/IMCEC.2016.7867493.spa
dc.relation.referencesA. F. G. Ferreira et al, Localization and Positioning Systems for Emergency Responders: A Survey, IEEE Communications Surveys Tutorials, vol. 19, (4), pp. 2836-2870, 2017. DOI: 10.1109/COMST.2017.2703620spa
dc.relation.referencesE. García Polo, Técnicas de Localización en Redes Inalámbricas de Sensores, Departamento de Sistemas Informáticos (DSI). [Online]. Available:http://www.dsi.uclm.es/personal/EvaMariaGarcia/docs/2008-Curso%20Verano.pdfspa
dc.relation.referencesA. Noertjahyana, I. A. Wijayanto and J. Andjarwirawan, Development of Mobile Indoor Positioning System Application Using Android and Bluetooth Low Energy with Trilateration Method, 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), Denpasar, 2017, pp. 185-189, doi: 10.1109/ICSIIT.2017.64.spa
dc.relation.referencesE. Tudanca Capón, Estudio de un sistema de posicionamiento 3D de drones, 2019. [Online]. Available: http://hdl.handle.net/10017/39107.spa
dc.relation.referencesN. Alsindi, Z. Chaloupka and J. Aweya, Entropy-based location fingerprinting for WLAN systems, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-7, doi: 10.1109/IPIN.2012.6418895.spa
dc.relation.referencesRadio Versions Bluetooth Technology Website, Bluetooth Technology Website. [Online]. Available: https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/.spa
dc.relation.referencesM. Ji, J. Kim, J. Jeon and Y. Cho, Analysis of positioning accuracy corresponding to the number of BLE beacons in indoor positioning system, 2015 17th International Conference on Advanced Communication Technology (ICACT), Seoul, 2015, pp. 92-95, doi: 10.1109/ICACT.2015.7224764.spa
dc.relation.referencesH. Torii, S. Ibi and S. Sampei, Indoor Positioning and Tracking by Multi-Point Observations of BLE Beacon Signal, 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, 2018, pp. 1-5, doi: 10.1109/WPNC.2018.8555808.spa
dc.relation.referencesS. Subedi, G. Kwon, Seokjoo Shin, Suk-seung Hwang and Jae-Young Pyun, Beacon based indoor positioning system using weighted centroid localization approach, 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, 2016, pp. 1016-1019, doi: 10.1109/ICUFN.2016.7536951.spa
dc.relation.referencesRoss, John. Book of Wireless : A Painless Guide to Wi-Fi and Broadband Wireless, No Starch Press, Incorporated, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/bibliotecausta-ebooks/detail.action?docID=1137524.spa
dc.relation.referencesH. X. Jian and W. Hao, WIFI Indoor Location Optimization Method Based on Position Fingerprint Algorithm, 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA), Changsha, 2017, pp. 585-588, doi: 10.1109/ICSGEA.2017.123.spa
dc.relation.referencesF. Davila, L. Barros, J. Reynolds, A. Lewis and I. Mogollón, El ultrasonido: desde el murciélago hasta la cardiología no invasivaUltrasound: from bats to non-invasive cardiology, sciencedirect, 2016, doi: 10.1016/j.rccar.2016.05.010spa
dc.relation.referencesultrasonido Diccionario de la lengua española, Diccionario de la lengua española - Edición del Tricentenario. [Online]. Available: https://dle.rae.es/ultrasonido?m=30_2.spa
dc.relation.referencesResonancia en columnas de aire, Universidad Católica del Norte. [Online]. Available: http://www.fisica.ucn.cl/wp-content/uploads/2017/09/GL6-RESONANCIA-EN-COLUMNAS-DE-AIRE.pdf.spa
dc.relation.referencesA. Vargas, L. Amescua-Guerra, M. Bernal and C. Pineda, Principios físicos básicos del ultrasonido, sonoanatomía del sistema musculoesquelético y artefactos ecográficos, 2008. [Online]. Available: https://www.medigraphic.com/pdfs/ortope/or-2008/or086e.pdf.spa
dc.relation.referencesJ. Sáez Cardador, Medidor de distancia por ultrasonidos, Universidad Carlos III de Madrid, 2006. [Online]. Available: http://hdl.handle.net/10016/9052.spa
dc.relation.referencesPIC12F509 Data Sheet. 2004. [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/105920/MICROCHIP/PIC12F5-09.htmlspa
dc.relation.references433 MHz RF Receiver Module, Components101, 2018. [Online]. Available: https://components101.com/433-mhz-rf-receiver-module.spa
dc.relation.referencesARM Cortex M3 STM32F103C8T6, microcontrollerelectronics. [Online]. Available: https://microcontrollerelectronics.com/arm-cortex-m3-stm32f103c8t6/spa
dc.relation.referencesTarjeta de Desarrollo STM32F103C8T6 ARM Cortex-M3 STM32, electronilab. [Online]. Available: https://electronilab.co/tienda/tarjeta-de-desarollo-stm32f103c8t6-arm-cortex-m3-stm32/.spa
dc.relation.references¿Qué es XBee? XBee.cl - Comunicación Inalámbrica para Tus Proyectos, DIGI. [Online]. Available: https://xbee.cl/que-es-xbee/.spa
dc.relation.referencesDIGI XBee, mouser. [Online]. Available: https://www.mouser.es/new/digi-international/digi-xbee-s2c-rf-modules/spa
dc.relation.referencesC. Rimoldi and L. Mundo, ENSAYO NO DESTRUCTIVO POR MÉTODO DE ULTRASONIDO. [Online]. Available: http://www.aero.ing.unlp.edu.ar/catedras/archivos/Apunte%20Ultrasonido%202012.pdfspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordCoplanarspa
dc.subject.keywordFadingspa
dc.subject.keywordDiffractionspa
dc.subject.keywordMeasurement errorspa
dc.subject.keywordAccuracyspa
dc.subject.keywordLine of sightspa
dc.subject.keywordPrecisionspa
dc.subject.keywordMultipath propagationspa
dc.subject.keywordReflectionspa
dc.subject.keywordRefractionspa
dc.subject.keywordVeracityspa
dc.subject.keywordIndoor positioning systemsspa
dc.subject.keywordRadio wavesspa
dc.subject.keywordWireless personal area networks (WPAN) -- Bluetoothspa
dc.subject.lembSistemas de posicionamiento en interioresspa
dc.subject.lembTecnología Wi-Fispa
dc.subject.lembRedes inalámbricas de área personal (WPAN) -- Bluetoothspa
dc.subject.lembOndas de radiospa
dc.subject.proposalCoplanarspa
dc.subject.proposalDesvanecimientospa
dc.subject.proposalDifracciónspa
dc.subject.proposalError de medidaspa
dc.subject.proposalExactitudspa
dc.subject.proposalLínea de visiónspa
dc.subject.proposalPrecisiónspa
dc.subject.proposalPropagación multitrayectospa
dc.subject.proposalReflexiónspa
dc.subject.proposalRefracciónspa
dc.subject.proposalVeracidadspa
dc.titleImplementación de un sistema de posicionamiento en interiores para robots móvilesspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2021stefhannyaforero.pdf
Tamaño:
27.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
CartaAutorizacion2021ForeroStefhannyaTorresJuan .pdf
Tamaño:
315.98 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta autorización
Thumbnail USTA
Nombre:
Carta_aprobacion_Biblioteca. Torres Laguado y Forero Gallego.pdf
Tamaño:
129.86 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación biblioteca

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: