Applications of magnetic and multiferroic core/shell nanostructures and their physical properties
dc.contributor.author | Bedoya-Hincapié, Claudia Milena | spa |
dc.contributor.author | Restrepo-Parra, Elisabeth | spa |
dc.contributor.author | López-Carreño, Luis Demetrio | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2019-07-05T20:23:49Z | spa |
dc.date.available | 2019-07-05T20:23:49Z | spa |
dc.date.issued | 2018-10-01 | spa |
dc.description | El potencial de la nanotecnología en el campo de la biomedicina ha sido crucial para contribuir con novedosos materiales a la posibilidad de cubrir de manera eficiente las necesidades actuales. En las últimas décadas, las nanoestructuras core/shell han llamado significativamente la atención debido a la modificación de sus propiedades físicas con la variación de su química y geometría. Estas estructuras tienen relevancia en terapia dirigida (transporte de medicamentos y tratamientos para complementar la quimioterapia y radioterapia), en imágenes y en la estimulación de las funciones celulares. Por tanto, en este artículo se presentará una revisión del actual desarrollo de las nanoestructuras core/shell, enfatizando en las propiedades de aquellas que han sido propuestas por sus potenciales aplicaciones biomédicas, las cuales están basadas en un comportamiento magnético o en una combinación de los fenómenos magnético y eléctrico (multiferroico). | spa |
dc.description.abstract | The potential of nanotechnology in the biomedical field has been crucial for contributing to the possibility of efficiently meeting present necessities with novel materials. Over the last few decades, nanostructures with a core/shell structure have attracted significant attention because of the possibility of changing their physical properties by varying their chemistry and geometry. These structures have become relevant in targeted therapy (drug delivery and treatments to complement chemotherapy and radiotherapy), imaging and in the stimulation of cellular functions. Thus in this paper the current development of core/shell nanostructures is reviewed, emphasizing the physical properties of those that have been proposed as potentially having biomedical applications, which are based in a magnetic behavior or in a mixture of magnetic and electric (multiferroic) phenomena. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Bedoya-Hincapié, C. M., Restrepo-Parra, E., & López-Carreño, L. D. (2018). Applications of magnetic and multiferroic core/shell nanostructures and their physical properties. Bogotá: doi:10.15446/dyna.v85n207.69203 | spa |
dc.identifier.doi | https://doi.org/10.15446/dyna.v85n207.69203 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/17469 | |
dc.relation.references | Berkowitz, A.E., Kodama, R.H., Makhlouf, S.A., Parker, F.T., Spada, F.E., McNiff-Jr, E.J. and Foner, S., Anomalous properties of magnetic nanoparticles. J. Magn. Magn. Mater., 196, pp. 591-594, 1999. DOI: 10.1016/S0304-8853(98)00845-2 | spa |
dc.relation.references | Kodama, R.H., Magnetic nanoparticles. J. Magn. Magn. Mater., 200, pp. 359-372, 1999. DOI: 10.1016/S0304-8853(99)00347-9 | spa |
dc.relation.references | Oliveira, P.N., Silva, D.M., Dias, G.S., Santos, I.A. and Cótica, L.F., Synthesis and physical property measurements of CoFe2O4:BaTiO3 core-shell composite nanoparticles. Ferroelectrics, 499(1), pp. 76-82, 2016. DOI: 10.1080/00150193.2016.1172882 | spa |
dc.relation.references | Mukherji, D., A novel method for the synthesis of Core-shell magnetic nanoparticle. Defence Science Journal, 66(4), pp. 291-306, 2016. DOI: 10.14429/dsj.66.10203. | spa |
dc.relation.references | Bouhou, S., Essaoudi, I., Ainane, A. and Ahuja, R., Investigation of a core/shell Ising nanoparticle: Thermal and magnetic properties. Physica B: Condensed Matter, 481, pp. 124-132, 2016. DOI: 10.1016/j.physb.2015.10.033 | spa |
dc.relation.references | Lima-Tenório, M.K., Gómez-Pineda, E.A., Ahmad, N.M., Fessi, H. and Elaissari, A., Magnetic nanoparticles: In vivo cancer diagnosis and therapy. International Journal of Pharmaceutics, 493(1–2), pp. 313-327, 2015. DOI: 10.1016/j.ijpharm.2015.07.059 | spa |
dc.relation.references | Masoudi, A., Madaah-Hosseini, H.R., Seyed-Reyhani, S.M., Shokrgozar, M.A., Oghabian, M.A. and Ahmadi, R., Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles. International Journal of Pharmaceutics, 439(1–2), pp. 28-40, 2012. DOI: 10.1016/j.ijpharm.2012.09.050 | spa |
dc.relation.references | Kargol, A., Malkinski, L. and Caruntu, G., Biomedical applications of multiferroic nanoparticles. In: Malkinski, L., (Ed.), Advanced Magnetic Materials, InTech: Rijeka, Croatia, 2012, pp. 89-118. DOI: 10.5772/39100 | spa |
dc.relation.references | Pankhurst, Q.A., Connolly, J., Jones, S. and Dobson, J., Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys., 36, R167, 2003. DOI: 10.1088/0022-3727/36/13/201 | spa |
dc.relation.references | Bossmann, S.H. and Wang, H., Magnetic nanomaterials: Applications in catalysis and life sciences, CPI Group (UK), 2017. DOI: 10.1039/9781788010375 | spa |
dc.relation.references | Rand, R.W., Snow, H.D., Elliott, D.G. and Haskins, G.M., Induction heating method for use in causing necrosis of neoplasm, US Patent Specification 4, 545, 368, 1985. | spa |
dc.relation.references | Zonghuan, L., Malcolm, P.D., Zhanhu, G., Vladimir, G.O., Kumar, C.S.S.R. and Yuri, L.M., Magnetic switch of permeability for polyelectrolyte microcapsules embedded with nanoparticles, Langmuir, 21, pp. 2042-2050, 2005. DOI: 10.1021/la047629q | spa |
dc.relation.references | McGill, S.L., Cuylear, C.L., Adolphi, N.L., Osiński, M. and Smyth, H.D., Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Trans. Nanobiosci., 8, pp. 33-42, 2009. DOI: 10.1109/TNB.2009.2017292 | spa |
dc.relation.references | Cole, A.J., Yang, V.C. and David, A.E., Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends in Biotechnology, 29(7), pp. 323-332, 2011. DOI: 10.1016/j.tibtech.2011.03.001. | spa |
dc.relation.references | Guduru, R., Liang, P., Runowicz, C., Nair, M., Atluri, V. and Khizroev, S., Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci. Rep., 3(2953), pp. 1-8, 2013. DOI: 10.1038/srep02953. | spa |
dc.relation.references | Yue, K., Guduru, R., Hong, J., Liang, P., Nair, M. and Khizroev, S., Magneto-electric nanoparticles for non-invasive brain stimulation. Plos One, 7(9), e44040, 2012. DOI: 10.1371/journal.pone.0044040 | spa |
dc.relation.references | Schileo, G., Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Progress in Solid State Chemistry, 41(4), pp. 87-98, 2013. DOI: 10.1016/j.progsolidstchem.2013.09.001 | spa |
dc.relation.references | Ryu, J., Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Elec- troceram, 8, pp. 107-119, 2002. DOI: 10.1023/A:1020599728432 | spa |
dc.relation.references | Palneedi, H., Annapureddy, V., Priya, S. and Ryu, J., Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators, 5(1), pp. 1-31, 2016. DOI: 10.3390/act5010009. | spa |
dc.relation.references | Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P.L. and Ramesh, R., Electrically assisted magnetic recording in multiferroic nanostructures. Nano Letters, 7(6), pp. 1586-1590, 2007. DOI: 10.1021/nl070465o | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Nanoparticle | spa |
dc.subject.keyword | Magnetic | spa |
dc.subject.keyword | Multiferroic | spa |
dc.subject.keyword | Magnetoelectric | spa |
dc.subject.keyword | Biomedical applications | spa |
dc.subject.proposal | Nanopartícula | spa |
dc.subject.proposal | Magnético | spa |
dc.subject.proposal | Multiferroico | spa |
dc.subject.proposal | Magnetoeléctrico | spa |
dc.subject.proposal | Aplicaciones biomédicas | spa |
dc.title | Applications of magnetic and multiferroic core/shell nanostructures and their physical properties | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Applications of magnetic and multiferroic core/shell nanostructures and their physical properties.pdf
- Tamaño:
- 703.74 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo SCOPUS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: